Função Polinomial: o que é, seus tipos e gráficos
As funções polinomiais são definidas por expressões polinomiais. Elas são representadas pela expressão:
onde,
- n: número inteiro positivo ou nulo
- x: variável
- a0, a1, ... an – 1, an são os coeficientes
Os termos são:
- an . xn,
- an – 1 . xn – 1,
- ... a1 . x,
- a0:
Cada função polinomial associa-se a um único polinômio, sendo assim, chamamos as funções polinomiais também de polinômios.
Um polinômio é uma sequência de somas e/ou subtrações de monômios, termos formados por números e letras. Nos monômios, as letras e números estão conectados por multiplicações e divisões.
Exemplos de monômios:
Monômio | coeficiente | variável |
---|---|---|
1 | ||
4 | ||
Um possível polinômio formado pelos monômios anteriores seria:
Ao polinômio anterior, podemos associar uma função polinomial.
Esta expressão nos diz que para cada valor de x, há um respectivo valor para f(x).
Valor Numérico de um Polinômio
Para encontrar o valor numérico de um polinômio, substituímos um valor numérico na variável x.
Exemplo
Qual o valor numérico de p(x) = 2x3 + x2 - 5x - 4 para x = 3?
Substituindo o valor na variável x temos:
Grau de uma função polinomial
Dependendo do expoente mais elevado que apresentam em relação à variável, os polinômios são classificados em:
- Função polinomial de grau 1: f(x) = x + 6
- Função polinomial de grau 2: g(x) = 2x2 + x - 2
- Função polinomial de grau 3: h(x) = 5x3 + 10x2 - 6x + 15
- Função polinomial de grau 4: p(x) = 20x4 - 15x3+ 5x2 + x - 10
- Função polinomial de grau 5: q(x) = 25x5 + 12x4 - 9x3 + 5x2 + x - 1
Obs: o polinômio nulo é aquele que possui todos os coeficientes iguais a zero. Quando isso ocorre, o grau do polinômio não é definido.
Gráficos da Função Polinomial
Podemos associar um gráfico a uma função polinomial, atribuindo valores a x na expressão p(x).
Desta forma, encontraremos os pares ordenados (x,y), que serão pontos pertencentes ao gráfico.
Ligando esses pontos teremos o esboço do gráfico da função polinomial.
Veja alguns exemplos de gráficos:
Função polinomial de grau 1
Função polinomial de grau 2
Função polinomial de grau 3
Igualdade de Polinômios
Dois polinômios são iguais se os coeficientes dos termos de mesmo grau são todos iguais.
Exemplo
Determine o valor de a, b, c e d para que os polinômios:
p(x) = ax4 + 7x3 + (b + 10)x2 - c
e
h(x) = (d + 4)x3 + 3bx2 + 8.
Para os polinômios serem iguais é necessário que os coeficientes correspondentes sejam iguais.
Então,
a = 0 (o polinômio h(x) não tem o termo x4, sendo assim seu valor é igual a zero)
b + 10 = 3b → 2b = 10 → b = 5
- c = 8 → c = - 8
d + 4 = 7 → d = 7 - 4 → d = 3
Operações com Polinômios
Confira abaixo exemplos das operações entre polinômios:
Adição
(- 7x3 + 5x2 - x + 4) + (- 2x2 + 8x -7)
- 7x3 + 5x2 - 2x2 - x + 8x + 4 - 7
- 7x3 + 3x2 + 7x -3
Subtração
(4x2 - 5x + 6) - (3x - 8)
4x2 - 5x + 6 - 3x + 8
4x2 - 8x + 14
Multiplicação
(3x2 - 5x + 8) . (- 2x + 1)
- 6x3 + 3x2 + 10x2 - 5x - 16x + 8
- 6x3 + 13x2 - 21x + 8
Divisão
Obs: Na divisão de polinômios utilizamos o método chave. Primeiramente realizamos a divisão entre os coeficientes numéricos e depois a divisão de potências de mesma base. Para isso, conserva-se a base e subtraia os expoentes.
A divisão é formada por: dividendo, divisor, quociente e resto.
divisor . quociente + resto = dividendo
Teorema do Resto
O Teorema do Resto representa o resto na divisão dos polinômios e possui o seguinte enunciado:
O resto da divisão de um polinômio f(x) por x - a é igual a f(a).
Leia também:
- Polinômios
- Fatoração de Polinômios
- Função Quadrática
- Função Exponencial
- Função Afim
- Exercícios de polinômios: adição e subtração
Exercícios de função polinomial
Exercício 1
(Cefet-MG) O polinômio P(x) é divisível por x - 3. Dividindo-se P(x) por x - 1, obtém-se o quociente Q(x) e resto 10. Nessas condições, o resto da divisão de Q(x) por x - 3 vale:
a) - 5
b) - 3
c) 0
d) 3
e) 5
Exercício 2
(UF-PB) Na inauguração da praça, foram realizadas várias atividades recreativas e culturais. Dentre elas, no anfiteatro, um professor de Matemática proferiu uma palestra para vários alunos do ensino médio e propôs o seguinte problema: Encontrar valores para a e b, de modo que o polinômio p(x) = ax3 + x2 + bx + 4 seja divisível por
q(x) = x2 - x - 2. Alguns alunos resolveram corretamente esse problema e, além disso, constataram que a e b satisfazem a relação:
a) a2 + b2 = 73
b) a2 - b2 = 33
c) a + b = 6
d) a2 + b = 15
e) a - b= 12
ASTH, Rafael. Função Polinomial: o que é, seus tipos e gráficos. Toda Matéria, [s.d.]. Disponível em: https://www.todamateria.com.br/funcao-polinomial/. Acesso em: