Experimente nosso Corretor de Redação ENEM com IA avançada. Corrija sua redação grátis

Simulado de Matemática e suas Tecnologias (ENEM)

Rafael C. Asth
Rafael C. Asth
Professor de Matemática e Física

Estude para o Enem com nosso simulado de Matemática. São 45 questões resolvidas e comentadas de Matemática e suas Tecnologias, selecionadas conforme os assuntos mais cobrados no Exame Nacional do Ensino Médio.

Atenção às regras do simulado

  • 4545 questões
  • Duração máxima de 3h
  • Seu resultado e o gabarito ficarão disponíveis ao finalizar o simulado

Questão 1

Um construtor precisa revestir o piso de uma sala retangular. Para essa tarefa, ele dispõe de dois tipos de cerâmicas:

a) cerâmica em forma de quadrado de lado 20 cm, que custa R$ 8,00 por unidade;

b) cerâmica em forma de triângulo retângulo isósceles de catetos com 20 cm, que custa R$ 6,00 por unidade.

A sala tem largura de 5 m e comprimento de 6 m.

O construtor deseja gastar a menor quantia possível com a compra de cerâmica. Sejam x o número de peças de cerâmica de forma quadrada e y o número de peças de cerâmica de forma triangular.

Isso significa, então, encontrar valores para x e y tais que 0,04x + 0,02y > 30 e que tornem o menor possível valor de

Gabarito explicado

A expressão do preço depende da quantidade x de revestimentos quadrados de R$ 8,00 mais y revestimentos triangulares de R$ 6,00. 

8 . x + 6 . y

8x + 6y

Questão 2

Um grupo sanguíneo, ou tipo sanguíneo, baseia-se na presença ou ausência de dois antígenos, A e B, na superfície das células vermelhas do sangue. Como dois antígenos estão envolvidos, os quatro tipos sanguíneos distintos são:

• Tipo A: apenas o antígeno A está presente;

• Tipo B: apenas o antígeno B está presente;

• Tipo AB: ambos os antígenos estão presentes;

• Tipo O: nenhum dos antígenos está presente.

Foram coletadas amostras de sangue de 200 pessoas e, após análise laboratorial, foi identificado que em 100 amostras está presente o antígeno A, em 110 amostras há presença do antígeno B e em 20 amostras nenhum dos antígenos está presente. Dessas pessoas que foram submetidas à coleta de sangue, o número das que possuem o tipo sanguíneo A é igual a 

Gabarito explicado

Esta é uma questão sobre conjuntos. 

Considere o conjunto universo com 200 elementos.

Imagem associada à resolução da questão.

Destes 20 são do tipo O. Assim, 200 - 20 = 180, podem ser A, B ou AB.

Imagem associada à resolução da questão.

Há 100 portadores do antígeno A e 110 do B. Como 100 + 110 = 210, deve haver uma intersecção, pessoas com sangue AB.

Esta intersecção deve possuir, 210 - 180 = 30 indivíduos, do tipo AB.

Dos 100 portadores do antígeno A, restam 100 - 30 = 70 pessoas apenas com antígeno A.

Imagem associada à resolução da questão.

Conclusão
Portanto, 70 pessoas possuem sangue do tipo A.

Questão 3

Uma empresa especializou-se no aluguel de contêineres que são utilizados como unidades comerciais móveis. O modelo padrão alugado pela empresa tem altura de 2,4 m e as outras duas dimensões (largura e comprimento), 3,0 m e 7,0 m, respectivamente.

Imagem associada à questão

Um cliente solicitou um contêiner com altura padrão, porém, com largura 40% maior e comprimento 20% menor que as correspondentes medidas do modelo padrão. Para atender às necessidades de mercado, a empresa também disponibiliza um estoque de outros modelos de contêineres, conforme o quadro.

Imagem associada à questão

Dos modelos disponíveis, qual atende às necessidades do cliente?

Gabarito explicado

Largura 40% maior.

Para aumentar 40% basta multiplicar por 1,40.

1,40 x 3,0 = 4,2 m 

Comprimento 20% menor

Para diminuir 20% basta multiplicar por 0,80.

0,80 x 7,0 = 5,6 m

Conclusão

O modelo II atende às necessidades do cliente.

4,2 m de largura e 5,6 m de comprimento.

Questão 4

Dois atletas partem de pontos, respectivamente P1 e P2 , em duas pistas planas distintas, conforme a figura, deslocando-se no sentido anti-horário até a linha de chegada, percorrendo, desta forma, a mesma distância (L). Os trechos retos dos finais das curvas até a linha de chegada desse percurso têm o mesmo comprimento (l) nas duas pistas e são tangentes aos trechos curvos, que são semicírculos de centro C. O raio do semicírculo maior é R1 e o raio do semicírculo menor é R2 .

Imagem associada à questão

Sabe-se que o comprimento de um arco circular é dado pelo produto do seu raio pelo ângulo, medido em radiano, subentendido pelo arco. Nas condições apresentadas, a razão da medida do ângulo P com 2 subscrito C com conjunção lógica sobrescrito P com 1 subscrito pela diferença L− l é dada por

Gabarito explicado

Objetivo
Determinar a razão numerador reto P com 2 subscrito espaço reto C com conjunção lógica sobrescrito espaço reto P com 1 subscrito sobre denominador reto L espaço menos espaço reto l fim da fração

Dados
L é o comprimento total e é o mesmo para os dois atletas.
l é o comprimento da parte reta e é o mesmo para os dois atletas. 

Passo 1: Determinar reto P com 2 subscrito espaço reto C com conjunção lógica sobrescrito espaço reto P com 1 subscrito

Chamando teta com 1 subscrito o ângulo do atleta 1 e teta com 2 subscrito o ângulo do atleta 2, o ângulo reto P com 2 subscrito espaço reto C com conjunção lógica sobrescrito espaço reto P com 1 subscrito é a diferença entre os dois.

reto P com 2 subscrito espaço reto C com conjunção lógica sobrescrito espaço reto P com 1 subscrito igual a reto teta com 2 subscrito espaço menos espaço reto teta com 1 subscrito

Como dito no enunciado, o arco é o produto entre o raio e o ângulo.

reto d com 1 subscrito igual a reto teta com 1 subscrito. reto R com 1 subscrito
reto d com 2 subscrito igual a reto teta com 2 subscrito. reto R com 2 subscrito

Substituindo na equação anterior:

reto P com 2 subscrito espaço reto C com conjunção lógica sobrescrito espaço reto P com 1 subscrito igual a reto d com 2 espaço espaço subscrito fim do subscrito sobre reto R com 2 subscrito menos espaço reto d com 1 subscrito sobre reto R com 1 subscrito

Passo 2: Determinar L - l

Chamando d1 a distância curva percorrida pelo atleta 1, ele percorre no total:

L = d1 + l

Chamando d2 a distância curva percorrida pelo atleta 2, ele percorre no total:

L = d2 + l

Isto implica que d1 = d2, pois como l e L são os mesmos para os dois atletas, as distâncias curvas também devem ser iguais. Logo

d1 = L - l
d2 = L - l

E, d1 = d2

Passo 3: determinar a razão numerador reto P com 2 subscrito espaço reto C com conjunção lógica sobrescrito espaço reto P com 1 subscrito sobre denominador reto L espaço menos espaço reto l fim da fração

numerador reto P com 2 subscrito espaço reto C com conjunção lógica sobrescrito espaço reto P com 1 subscrito sobre denominador reto L espaço menos espaço reto l fim da fração igual a numerador começar estilo mostrar d com 2 subscrito sobre R com 2 subscrito fim do estilo menos começar estilo mostrar d com 1 subscrito sobre R com 1 subscrito fim do estilo sobre denominador d com 2 subscrito fim da fração

Substituindo d1 por d2,

numerador começar estilo mostrar d com 2 subscrito sobre R com 2 subscrito menos d com 2 subscrito sobre R com 1 subscrito fim do estilo sobre denominador d com 2 subscrito fim da fração igual a abre parênteses d com 2 subscrito sobre R com 1 subscrito menos d com 2 subscrito sobre R com 2 subscrito fecha parênteses. espaço 1 sobre d com 2 subscrito igual a d com 2 subscrito abre parênteses 1 sobre R com 2 subscrito menos 1 sobre R com 1 subscrito fecha parênteses 1 sobre d com 2 subscrito igual a 1 sobre R com 2 subscrito menos 1 sobre R com 1 subscrito

Conclusão

A resposta é 1/R2 - 1/R1.

Questão 5

Um vaso decorativo quebrou e os donos vão encomendar outro para ser pintado com as mesmas características. Eles enviam uma foto do vaso na escala 1 : 5 (em relação ao objeto original) para um artista. Para ver melhor os detalhes do vaso o artista solicita uma cópia impressa da foto com dimensões triplicadas em relação às dimensões da foto original. Na cópia impressa, o vaso quebrado tem uma altura de 30 centímetros.

Qual é a altura real, em centímetros, do vaso quebrado?

Gabarito explicado

Objetivo
Determinar a altura real do vaso.

Chamando a altura original de h

Primeiro momento: foto

A foto enviada está na escala 1 : 5, o que significa dizer que é cinco vezes menor que o vaso.
Nesta foto, a altura é 1/5 da altura real.

1 quinto espaço de espaço reto h espaço igual a espaço reto h sobre 5

Segundo momento: cópia impressa ampliada

A cópia impressa é triplicada em dimensões (3 : 1), o que significa ser 3 vezes maior que a foto.
Na cópia, a altura é 3 vezes maior que na foto e possui 30 cm.

3 espaço. espaço h sobre 5 igual a 30
numerador 3 h sobre denominador 5 fim da fração igual a 30
3 h espaço igual a espaço 30 espaço. espaço 5
3 h espaço igual a espaço 150
h igual a numerador 150 espaço sobre denominador 3 fim da fração
h igual a 50

Conclusão
O vaso original possui 50 cm de altura.

Questão 6

Após o término das inscrições de um concurso, cujo número de vagas é fixo, foi divulgado que a razão entre o número de candidatos e o número de vagas, nesta ordem, era igual a 300. Entretanto, as inscrições foram prorrogadas, inscrevendo-se mais 4 000 candidatos, fazendo com que a razão anteriormente referida passasse a ser igual a 400. Todos os candidatos inscritos fizeram a prova, e o total de candidatos aprovados foi igual à quantidade de vagas. Os demais candidatos foram reprovados.

Nessas condições, quantos foram os candidatos reprovados?

Gabarito explicado

Objetivo
Determinar o número de reprovados.

Passo 1: número de reprovados.

R = TC - V

Sendo,
R o número de reprovados;
TC o total de candidatos;
V o número de vagas (aprovados).

O total de candidatos TC, é o número inicial de candidatos inscritos C, mais 4000.

TC = C + 4000

Assim, o número de reprovados é:

R espaço igual a espaço C espaço mais espaço 4000 espaço menos espaço V

Passo 2: primeiro momento da inscrição.

C sobre V igual a 300

Logo, C = 300V

Passo 3: segundo momento da inscrição.

numerador reto C espaço mais 4000 sobre denominador reto V fim da fração igual a 400

Substituindo o valor de C e isolando V.

numerador 300 reto V espaço mais espaço 4000 sobre denominador reto V fim da fração igual a 400
300 reto V espaço mais espaço 4000 espaço igual a espaço 400 reto V
4000 espaço igual a espaço 100 reto V
reto V igual a 40

Substituindo V = 40 em C = 300V.

C = 300 . 40 = 12 000

Temos,
V = 40 (total de vagas ou candidatos aprovados) 
C = 12 000 

Substituindo na equação do passo 1:

reto R espaço igual a espaço reto C espaço mais espaço 4 espaço 000 espaço menos espaço reto V
reto R espaço igual a espaço 12 espaço 000 espaço mais espaço 4 espaço 000 espaço menos espaço 40
reto R espaço igual a espaço 16 espaço 000 espaço menos 40
reto R espaço igual a espaço 15 espaço 960

Conclusão
15 960 candidatos foram reprovados no concurso.

Questão 7

No trapézio isósceles mostrado na figura a seguir, M é o ponto médio do segmento BC, e os pontos P e Q são obtidos dividindo o segmento AD em três partes iguais.

Imagem associada à questão

Pelos pontos B, M, C, P e Q são traçados segmentos de reta, determinando cinco triângulos internos ao trapézio, conforme a figura. A razão entre BC e AD que determina áreas iguais para os cinco triângulos mostrados na figura é

Gabarito explicado

Os cinco triângulos possuem a mesma área e a mesma altura, pois a distância entre as bases do trapézio são iguais em qualquer ponto, visto que BC e AD são paralelas. 

Como a área de um triângulo é determinada por numerador b espaço. espaço h sobre denominador 2 fim da fração e todos possuem mesma área, isto implica que as bases também são iguais a todos.

Assim, BC = 2b e Ad = 3b

Logo, a razão é:

numerador B C sobre denominador A D fim da fração igual a numerador 2 b sobre denominador 3 b fim da fração igual a 2 sobre 3

Questão 8

Um parque temático brasileiro construiu uma réplica em miniatura do castelo de Liechtenstein. O castelo original, representado na imagem, está situado na Alemanha e foi reconstruído entre os anos de 1840 e 1842, após duas destruições causadas por guerras.

Imagem associada à resolução da questão.

O castelo possui uma ponte de 38,4 m de comprimento e 1,68 m de largura. O artesão que trabalhou para o parque produziu a réplica do castelo, em escala. Nessa obra, as medidas do comprimento e da largura da ponte eram, respectivamente, 160 cm e 7 cm.

A escala utilizada para fazer a réplica é

Gabarito explicado

A escala é O : R

Sendo O a medida original e R da réplica.

Tomando a medida do comprimento:

O sobre R igual a numerador 38 vírgula 4 sobre denominador 1 vírgula 6 fim da fração igual a 24

Logo, a escala é de 1 : 24. 

Questão 9

Um mapa é a representação reduzida e simplificada de uma localidade. Essa redução, que é feita com o uso de uma escala, mantém a proporção do espaço representado em relação ao espaço real.

Certo mapa tem escala 1 : 58 000 000.

Imagem associada à questão

Considere que, nesse mapa, o segmento de reta que liga o navio à marca do tesouro meça 7,6 cm.

A medida real, em quilômetro, desse segmento de reta é

Gabarito explicado

A escala do mapa é 1 : 58 000 000 

Isto significa que 1 cm no mapa equivalem 58 000 000 cm no terreno real.

Passando para quilômetro, dividimos por 100 000.

58 000 000 / 100 000 = 580 km.

Montando a proporção:

1 sobre 580 igual a numerador 7 vírgula 6 sobre denominador reto x fim da fração
reto x igual a 7 vírgula 6 espaço. espaço 580 espaço
reto x igual a 4 espaço 408 espaço km

Questão 10

O quadro apresenta a relação dos jogadores que fizeram parte da seleção brasileira de voleibol masculino nas Olimpíadas de 2012, em Londres, e suas respectivas alturas, em metro.

Imagem associada à questão

A mediana das alturas, em metro, desses jogadores é

Gabarito explicado

A mediana é uma medida de tendência central e, é necessário organizar os dados de maneira crescente. 

Imagem associada à resolução da questão.

Como a quantidade de dados é par (12), a mediana é a média aritmética das medidas centrais.

  M com e subscrito igual a numerador 1 vírgula 94 espaço mais espaço 1 vírgula 98 sobre denominador 2 fim da fração igual a numerador 3 vírgula 92 sobre denominador 2 fim da fração igual a 1 vírgula 96

Questão 11

Uma empresa aérea lança uma promoção de final de semana para um voo comercial. Por esse motivo, o cliente não pode fazer reservas e as poltronas serão sorteadas aleatoriamente. A figura mostra a posição dos assentos no avião:

Imagem associada à resolução.

Por ter pavor de sentar entre duas pessoas, um passageiro decide que só viajará se a chance de pegar uma dessas poltronas for inferior a 30%.

Avaliando a figura, o passageiro desiste da viagem, porque a chance de ele ser sorteado com uma poltrona entre duas pessoas é mais aproximada de

Gabarito explicado

A probabilidade é uma razão entre a quantidade de casos favoráveis e a quantidade total.

P espaço igual a espaço numerador p o l t r o n a s espaço n o espaço m e i o espaço sobre denominador t o t a l espaço d e espaço p o l t r o n a s fim da fração

Total de poltronas

O total de poltronas no avião é:

38 x 6 - 8 = 220 poltronas.

Repare de há 8 espaços sem poltronas. 

Poltronas desconfortáveis

38 x 2 (as que estão entre duas) menos 8, que possuem espaços vazios perto das janelas. 

38 x 2 - 8 = 68

A probabilidade é:

P igual a 68 sobre 220 aproximadamente igual 0 vírgula 3090

Em porcentagem

0,3090 x 100 = 30,9%

Conclusão
A probabilidade do passageiro se sentar entre duas pessoas é de, aproximadamente, 31%.

Questão 12

O Índice de Desenvolvimento Humano (IDH) mede a qualidade de vida dos países para além dos indicadores econômicos. O IDH do Brasil tem crescido ano a ano e atingiu os seguintes patamares: 0,600 em 1990; 0,665 em 2000; 0,715 em 2010. Quanto mais perto de 1,00, maior é o desenvolvimento do país.

O Globo. Caderno Economia, 3 nov. 2011 (adaptado).

Observando o comportamento do IDH nos períodos citados, constata-se que, ao longo do período 1990-2010, o IDH brasileiro

Gabarito explicado

A variação entre 2000 e 1990 foi de:

IDH 2000 - IDH 1990
0,665 - 0,600 = 0,065

A variação entre 2010 e 2000 foi de:

IDH 2010 - IDH 2000
0,715 - 0,665 = 0,050

Sendo assim o IDH aumentou com variações decenais decrescentes. 

Questão 13

Um contrato de empréstimo prevê que quando uma parcela é paga de forma antecipada, conceder-se-á uma redução de juros de acordo com o período de antecipação. Nesse caso, paga-se o valor presente, que é o valor, naquele momento, de uma quantia que deveria ser paga em uma data futura. Um valor presente P submetido a juros compostos com taxa i, por um período de tempo n, produz um valor futuro V determinado pela fórmula

V espaço igual a espaço P espaço ˑ espaço parêntese esquerdo 1 espaço mais espaço i parêntese direito à potência de n

Em um contrato de empréstimo com sessenta parcelas fixas mensais, de R$ 820,00, a uma taxa de juros de 1,32% ao mês, junto com a trigésima parcela será paga antecipadamente uma outra parcela, desde que o desconto seja superior a 25% do valor da parcela.

Utilize 0,2877 como aproximação para ln abre parênteses 4 sobre 3 fecha parênteses e 0,0131 como aproximação para In (1,0132).

A primeira das parcelas que poderá ser antecipada junto com a 30ª é a

Gabarito explicado

Objetivo 
Calcular o número da parcela que deve ser antecipada para produzir 25% de desconto no valor presente. 

O número da parcela é 30 + n. Onde 30 é o número da parcela atual e n é o número de parcelas à frente necessário.

V é o valor da parcela, R$820,00.
P é o valor da parcela adiantada. 
i é a taxa 1,32% = 0,0132
n é o número de parcelas 

O valor a ser pago na parcela antecipada deve ser, pelo menos, 25% menor que o valor de R$820,00.

25 sinal de percentagem espaço d e espaço 820 igual a espaço
0 vírgula 75.820 igual a espaço
75 sobre 100.820 igual a
3 sobre 4.820

Da fórmula de juros compostos fornecida pela questão, temos:

V igual a P parêntese esquerdo 1 mais i parêntese direito à potência de n espaço
820 igual a 820.3 sobre 4 parêntese esquerdo 1 mais i parêntese direito à potência de n
820 sobre 820 igual a 3 sobre 4 parêntese esquerdo 1 mais i parêntese direito à potência de n
1 igual a 3 sobre 4 parêntese esquerdo 1 mais i parêntese direito à potência de n
4 sobre 3 igual a parêntese esquerdo 1 mais 0 vírgula 0132 parêntese direito à potência de n espaço
4 sobre 3 igual a 1 vírgula 0132 à potência de n

Aplicando o logarítmo em ambos os lados da igualdade:

ln abre parênteses 4 sobre 3 fecha parênteses igual a ln espaço 1 vírgula 0132 à potência de n

Pela propriedade dos logarítmos, o expoente n passa a multiplicar o logarítmo.

ln abre parênteses 4 sobre 3 fecha parênteses igual a n espaço. espaço ln espaço 1 vírgula 0132

Substituindo os valores fornecidos na questão:

0 vírgula 2877 espaço igual a espaço n espaço. espaço 0 vírgula 0131
numerador 0 vírgula 2877 sobre denominador 0 vírgula 0131 fim da fração igual a n
21 vírgula 96 aproximadamente igual n

Assim, acrescentando 22 + 30 = 52.

Conclusão
A parcela adiantada deve ser a 52ª.

Questão 14

Camile gosta de caminhar em uma calçada em torno de uma praça circular que possui 500 metros de extensão, localizada perto de casa. A praça, bem como alguns locais ao seu redor e o ponto de onde inicia a caminhada, estão representados na figura:

Imagem associada à questão

Em uma tarde, Camile caminhou 4 125 metros, no sentido anti-horário, e parou.

Qual dos locais indicados na figura é o mais próximo de sua parada?

Gabarito explicado

O enunciado diz que uma volta possui 500 m. É preciso cuidado para não confundir extensão com diâmetro. 

4125 sobre 500 igual a 8 vírgula 25 espaço igual a espaço 8 espaço mais espaço 25 sobre 100 igual a 8 espaço mais espaço 1 quarto

Após 8 voltas completas ela para no ponto de partida novamente, e avança mais 1/4 de volta no sentido anti-horário, chegando na padaria. 

Questão 15

O prefeito de uma cidade deseja promover uma festa popular no parque municipal para comemorar o aniversário de fundação do município. Sabe-se que esse parque possui formato retangular, com 120 m de comprimento por 150 m de largura. Além disso, para segurança das pessoas presentes no local, a polícia recomenda que a densidade média, num evento dessa natureza, não supere quatro pessoas por metro quadrado.

Seguindo as recomendações de segurança estabelecidas pela polícia, qual é o número máximo de pessoas que poderão estar presentes na festa?

Gabarito explicado

A área da praça é de 120 x 150 = 18 000 m².

Com 4 pessoas por metro quadrado, temos:

18 000 x 4 = 72 000 pessoas.

Questão 16

Um zootecnista pretende testar se uma nova ração para coelhos é mais eficiente do que a que ele vem utilizando atualmente. A ração atual proporciona uma massa média de 10 kg por coelho, com um desvio padrão de 1 kg, alimentado com essa ração durante um período de três meses.

O zootecnista selecionou uma amostra de coelhos e os alimentou com a nova ração pelo mesmo período de tempo. Ao final, anotou a massa de cada coelho, obtendo um desvio padrão de 1,5 kg para a distribuição das massas dos coelhos dessa amostra.

Para avaliar a eficiência dessa ração, ele utilizará o coeficiente de variação (CV) que é uma medida de dispersão definida por CV = numerador reto s sobre denominador x com barra sobrescrito fim da fração , em que s representa o desvio padrão e reto x com barra sobrescrito , a média das massas dos coelhos que foram alimentados com uma determinada ração.

O zootecnista substituirá a ração que vinha utilizando pela nova, caso o coeficiente de variação da distribuição das massas dos coelhos que foram alimentados com a nova ração for menor do que o coeficiente de variação da distribuição das massas dos coelhos que foram alimentados com a ração atual.

A substituição da ração ocorrerá se a média da distribuição das massas dos coelhos da amostra, em quilograma, for superior a

Gabarito explicado

Para que ocorra substituição, a condição é:

CV nova < CV atual

Dados com a ração atual.

reto S espaço igual a espaço 1 espaço kg espaço ​ ​ ​ ​ ​ ​ ​
reto x com barra sobrescrito espaço igual a espaço 10

CV atual = numerador S sobre denominador x com barra sobrescrito fim da fração igual a 1 sobre 10

Dados com a ração nova.

S espaço igual a espaço 1 vírgula 5 espaço k g
x com barra sobrescrito espaço igual a espaço d e s c o n h e c i d o

Para determinar o x necessário para que ocorra a substituição:

C V espaço n o v a espaço menor que espaço C V espaço a t u a l
numerador 1 vírgula 5 sobre denominador x fim da fração menor que 1 sobre 10
1 vírgula 5 espaço. espaço 10 menor que x
15 menor que x espaço espaço

Questão 17

O número de frutos de uma determinada espécie de planta se distribui de acordo com as probabilidades apresentadas no quadro.

Imagem associada à questão

A probabilidade de que, em tal planta, existam, pelo menos, dois frutos é igual a

Gabarito explicado

Pelo menos dois, implica haver dois ou mais. 

P(2) ou P(3) ou P(4) ou P(5) = 0,13 + 0,03 +0,03 + 0,01 = 0,20 ou 20%

Questão 18

A taxa de urbanização de um município é dada pela razão entre a população urbana e a população total do município (isto é, a soma das populações rural e urbana). Os gráficos apresentam, respectivamente, a população urbana e a população rural de cinco municípios (I, II, III, IV, V) de uma mesma região estadual. Em reunião entre o governo do estado e os prefeitos desses municípios, ficou acordado que o município com maior taxa de urbanização receberá um investimento extra em infraestrutura.

Tabela associada à questão

Segundo o acordo, qual município receberá o investimento extra?

Gabarito explicado

A taxa de urbanização é dada por:

T igual a numerador U sobre denominador U espaço mais espaço R fim da fração

Verificando para cada município:

Município I
T igual a numerador 8 sobre denominador 8 mais 4 fim da fração igual a 8 sobre 12 igual a 0 vírgula 666 espaço...

Município II

T igual a numerador 10 sobre denominador 10 mais 8 fim da fração igual a 10 sobre 18 igual a 0 vírgula 555 espaço...

Município III

T igual a numerador 11 sobre denominador 11 mais 5 fim da fração igual a 11 sobre 16 igual a 0 vírgula 6875

Município IV

T igual a numerador 18 sobre denominador 18 mais 10 fim da fração igual a 18 sobre 28 aproximadamente igual 0 vírgula 6428

Município V

T igual a numerador 17 sobre denominador 17 mais 12 fim da fração igual a 17 sobre 29 igual a 0 vírgula 5862

Logo, a maior taxa de urbanização é a do município III.

Questão 19

A Lei da Gravitação, de Isaac Newton, estabelece a intensidade da força entre dois objetos. Ela é dada pela equaçao F igual a g numerador m com 1 espaço. espaço subscrito fim do subscrito m com 2 subscrito sobre denominador d ao quadrado fim da fração , sendo m1 e m2 as massas dos objetos, d a distância entre eles, g a constante universal da gravitação e F a intensidade da força gravitacional que um objeto exerce sobre o outro.

Considere um esquema que represente cinco satélites de mesma massa orbitando a Terra. Denote os satélites por A, B, C, D e E, sendo esta a ordem decrescente da distância da Terra (A o mais distante e E o mais próximo da Terra).

De acordo com a Lei da Gravitação Universal, a Terra exerce maior força sobre o satélite

Gabarito explicado

Como na fórmula d está no denominador e quanto maior for seu valor, menor será a força, pois será uma divisão por um número maior. Desse modo, a força gravitacional diminui com o aumento da distância.  

Assim, para um menor d, a força é maior.

Portanto, o satélite E e a Terra formam a maior força gravitacional.

Questão 20

Uma fábrica de tubos acondiciona tubos cilíndricos menores dentro de outros tubos cilíndricos. A figura mostra uma situação em que quatro tubos cilíndricos estão acondicionados perfeitamente em um tubo com raio maior.

Imagem associada à questão.

Suponha que você seja o operador da máquina que produzirá os tubos maiores em que serão colocados, sem ajustes ou folgas, quatro tubos cilíndricos internos.

Se o raio da base de cada um dos cilindros menores for igual a 6 cm, a máquina por você operada deverá ser ajustada para produzir tubos maiores, com raio da base igual a

Gabarito explicado

Unindo os raios dos círculos menores formamos um quadrado:

O raio do círculo maior é a metade da diagonal deste quadrado mais um raio de um círculo menor.

R igual a d sobre 2 mais r

Onde,
R é o raio do círculo maior.
d é a diagonal do quadrado.
r é o raio do círculo menor.

Para determinar a diagonal do quadrado, utilizamos o teorema de Pitágoras, onde a diagonal é a hipotenusa do triângulo com lados iguais a r + r = 12.

d igual a raiz quadrada de r ao quadrado mais espaço r ao quadrado fim da raiz
d igual a raiz quadrada de 12 ao quadrado mais 12 ao quadrado fim da raiz
d igual a raiz quadrada de 144 espaço mais espaço 144 fim da raiz
d igual a raiz quadrada de 288

Substituindo o valor de d na equação de R, temos:

R igual a d sobre 2 mais r
R igual a numerador raiz quadrada de 288 sobre denominador 2 fim da fração mais 6

Igualando os denominadores,

R igual a numerador raiz quadrada de 288 sobre denominador 2 fim da fração mais 12 sobre 2
R igual a numerador raiz quadrada de 288 espaço mais espaço 12 sobre denominador 2 fim da fração

Fatorando o 288, temos:

288 = 2 . 2² . 2² . 3²

A raíz de 288 fica:

raiz quadrada de 288 espaço igual a
raiz quadrada de 2 espaço. espaço 2 ao quadrado espaço. espaço 2 ao quadrado espaço. espaço 3 ao quadrado fim da raiz igual a
2.2.3. raiz quadrada de 2 igual a
12 raiz quadrada de 2

Substituindo na equação do R:

R igual a numerador 12 raiz quadrada de 2 espaço mais espaço 12 sobre denominador 2 fim da fração

Colocando o 12 em evidência e simplificando,

R igual a numerador 12 parêntese esquerdo raiz quadrada de 2 espaço mais espaço 1 parêntese direito sobre denominador 2 fim da fração
R igual a 6 parêntese esquerdo raiz quadrada de 2 mais 1 parêntese direito

Questão 21

Uma pessoa produzirá uma fantasia utilizando como materiais: 2 tipos de tecidos diferentes e 5 tipos distintos de pedras ornamentais. Essa pessoa tem à sua disposição 6 tecidos diferentes e 15 pedras ornamentais distintas.

A quantidade de fantasias com materiais diferentes que podem ser produzidas é representada pela expressão

Gabarito explicado

Pelo princípio multiplicativo temos que o número de possibilidades é o produto entre:

opções de tecidos x opções de pedras

Como serão escolhidos 2 tecidos entre 6, devemos saber de quantas formas podemos escolher 2 tecidos em um conjunto de 6 tecidos diferentes. 

C com 6 subscrito com 2 sobrescrito igual a numerador 6 fatorial sobre denominador parêntese esquerdo 6 menos 2 parêntese direito fatorial 2 fatorial fim da fração igual a numerador 6 fatorial sobre denominador 4 fatorial espaço. espaço 2 fatorial fim da fração

Em relação às pedras, iremos escolher 5 pedras em um conjunto de 15 diferentes, logo:

C com 15 subscrito com 5 sobrescrito igual a numerador 15 fatorial sobre denominador parêntese esquerdo 15 menos 5 parêntese direito fatorial espaço. espaço 5 fatorial fim da fração igual a numerador 15 fatorial sobre denominador 10 fatorial espaço. espaço 5 fatorial fim da fração

Sendo assim, a quantidade de fantasias com materiais diferentes que podem ser produzidas é representada pela expressão:

numerador 6 fatorial sobre denominador 4 fatorial espaço 2 fatorial fim da fração. numerador 15 fatorial sobre denominador 10 fatorial espaço 5 fatorial fim da fração

Questão 22

A probabilidade de um empregado permanecer em uma dada empresa particular por 10 anos ou mais é de 1/6.

Um homem e uma mulher começam a trabalhar nessa companhia no mesmo dia. Suponha que não haja nenhuma relação entre o trabalho dele e o dela, de modo que seus tempos de permanência na firma são independentes entre si.

A probabilidade de ambos, homem e mulher, permanecerem nessa empresa por menos de 10 anos é de

Gabarito explicado

A probabilidade de permanecer mais de 10 anos é 1/6, logo, a probabilidade de permanecer menos de 10 anos é de 5/6, para cada funcionário.

Como queremos a probabilidade de que os dois saiam antes de 10 anos, temos:

5 sobre 6.5 sobre 6 igual a 25 sobre 36

Questão 23

Um vidraceiro é contratado para colocar uma porta de vidro que escorregará em uma canaleta de largura interna igual a 1,45 cm, como mostra a figura.

Imagem associada à questão

O vidraceiro precisa de uma placa de vidro de maior espessura possível, tal que deixe uma folga total de pelo menos 0,2 cm, para que o vidro possa escorregar na canaleta, e no máximo 0,5 cm para que o vidro não fique batendo com a interferência do vento após a instalação. Para conseguir essa placa de vidro, esse vidraceiro foi até uma loja e lá encontrou placas de vidro com espessuras iguais a: 0,75 cm; 0,95 cm; 1,05 cm; 1,20 cm; 1,40 cm.

Para atender às restrições especificadas, o vidraceiro deverá comprar a placa de espessura, em centímetro, igual a

Gabarito explicado

Folga mínima

A espessura da canaleta, 1,45 cm, menos a espessura do vidro, devem permitir uma folga de pelo menos 0,20 cm.

1,45 - 0,20 = 1,25 cm

Folga máxima

A espessura da canaleta,1,45 cm, menos a espessura do vidro devem permitir uma folga de no máximo 0,50 cm.

1,45 - 0,50 = 0,95 cm

Assim, a espessura do vidro deve ser entre 0,95 e 1,25 cm, sendo a maior possível.

Conclusão
Dentre as opções, o vidro de 1,20 cm está no intervalo e é o maior disponível.

Questão 24

Um atleta produz sua própria refeição com custo fixo de R$ 10,00. Ela é composta por 400 g de frango, 600 g de batata-doce e uma hortaliça. Atualmente, os preços dos produtos para essa refeição são:

Imagem associada à questão

Em relação a esses preços, haverá um aumento de 50% no preço do quilograma de batata-doce, e os outros preços não serão alterados. O atleta deseja manter o custo da refeição, a quantidade de batata-doce e a hortaliça. Portanto, terá que reduzir a quantidade de frango.

Qual deve ser a redução percentual da quantidade de frango para que o atleta alcance seu objetivo?

Gabarito explicado

Dados
Custo fixo
400 g de frango a R$12,50 o kg.
600 g batata-doce a R$ 5,00 kg.
1 hortaliça

Aumento de 50% no preço da batata-doce.

Objetivo
Determinar a redução percentual de frango na refeição que mantenha o preço após o aumento.

Custo atual
Transformando a massa de g para kg.

0,4 x 12,50 = R$ 5,00 de frango.
0,6 x 5,00 = R$ 3,00 de batata-doce.
R$ 2,00 da hortaliça.

Aumento no preço da batata-doce.
5,00 + 50% de 5,00
5,00 x 1,50 = R$ 7,50 

Novo custo
0,6 x 7,5 = R$ 4,50 de batata-doce
R$ 2,00 da hortaliça.

O subtotal é de: 4,50 + 2,00 = 6,50. 

Desse modo, sobram 10,00 - 6,50 = 3,50 para compra do frango.

Nova quantidade de frango
12,50 compram 1000g
3,50 comprar xg

Fazendo uma regra de três:

numerador 12 vírgula 50 sobre denominador 3 vírgula 50 fim da fração igual a 1000 sobre x
12 vírgula 50 espaço. espaço x espaço igual a espaço 1000 espaço. espaço 3 vírgula 50
12 vírgula 50 espaço. espaço x espaço igual a 3 espaço 500
x igual a numerador 3500 sobre denominador 12 vírgula 50 fim da fração
x igual a 280 g

Redução percentual
400 espaço. espaço x espaço igual a espaço 280 espaço espaço
x igual a 280 sobre 400
x igual a 0 vírgula 70

Isto significa que houve uma redução de 0,30, pois, 1,00 - 0,70 = 0,30. 

Conclusão
O atleta deverá reduzir a quantidade de frango em 30% para manter o preço da refeição.

Questão 25

Um técnico gráfico constrói uma nova folha a partir das medidas de uma folha A0. As medidas de uma folha A0 são 595 mm de largura e 840 mm de comprimento.

A nova folha foi construída do seguinte modo: acrescenta uma polegada na medida da largura e 16 polegadas na medida do comprimento. Esse técnico precisa saber a razão entre as medidas da largura e do comprimento, respectivamente, dessa nova folha.

Considere 2,5 cm como valor aproximado para uma polegada.

Qual é a razão entre as medidas da largura e do comprimento da nova folha? 

Gabarito explicado

Passando as medidas para milimetro:

Largura = 595 mm + (1 . 2,5 . 10) mm = 620 mm
Comprimento = 840 mm + (16 . 2,5 . 10) mm = 1 240 mm

A razão é:

620/1240 

Questão 26

Na construção de um conjunto habitacional de casas populares, todas serão feitas num mesmo modelo, ocupando, cada uma delas, terrenos cujas dimensões são iguais a 20 m de comprimento por 8 m de largura. Visando a comercialização dessas casas, antes do início das obras, a empresa resolveu apresentá-las por meio de maquetes construídas numa escala de 1 : 200.

As medidas do comprimento e da largura dos terrenos, respectivamente, em centímetros, na maquete construída, foram de

Gabarito explicado

Passando as medidas do terreno para centímetro:

20 m = 2000 cm

8 m = 800 cm

Como a escala é de 1:200 devemos dividir as medidas do terreno por 200.

2000 / 200 = 10

800 / 20 = 4

Conclusão
A resposta é: 10 e 4.

Questão 27

Para certas molas, a constante elástica (C) depende do diâmetro médio da circunferência da mola (D), do número de espirais úteis (N), do diâmetro (d) do fio de metal do qual é formada a mola e do módulo de elasticidade do material (G). A fórmula evidencia essas relações de dependência.

C igual a numerador G. d à potência de 4 sobre denominador 8. D ao cubo. N fim da fração    

O dono de uma fábrica possui uma mola M1 em um de seus equipamentos, que tem características D1, d1, N1 e G1, com uma constante elástica C1. Essa mola precisa ser substituída por outra, M2, produzida com outro material e com características diferentes, bem como uma nova constante elástica C2, da seguinte maneira: I) D2 = D1/3 ; II) d2 = 3d1; III) N2 = 9N1. Além disso, a constante de elasticidade G2 do novo material é igual a 4 G1.

O valor da constante C2 em função da constante C1 é

Gabarito explicado

A segunda mola é:

C com 2 subscrito igual a numerador G com 2 subscrito. d com 2 subscrito à potência de 4 sobre denominador 8. D com 2 subscrito ao cubo. N com 2 subscrito fim da fração

Os valores das constantentes 2 são:

D2 = D1/3
d2 = 3d1
N2 = 9N1
G2 = 4G1

Substituindo e fazendo os cálculos:

C com 2 subscrito igual a numerador 4 G com 1 subscrito espaço. espaço parêntese esquerdo 3 d com 1 subscrito parêntese direito à potência de 4 sobre denominador 8. abre parênteses começar estilo mostrar D com 1 subscrito sobre 3 fim do estilo fecha parênteses ao cubo. espaço 9 N com 1 subscrito fim da fração
C com 2 subscrito igual a numerador 4 G com 1 subscrito espaço. espaço 3 à potência de 4 d com 1 subscrito à potência de 4 sobre denominador 8. começar estilo mostrar D com 1 subscrito ao cubo sobre 3 ao cubo fim do estilo. espaço 9 N com 1 subscrito fim da fração

Passando os coeficientes para frente:

C com 2 subscrito igual a numerador 4 espaço. espaço 3 à potência de 4 sobre denominador começar estilo mostrar 9 sobre 3 ao cubo fim do estilo fim da fração numerador espaço G com 1 subscrito espaço. espaço d com 1 subscrito à potência de 4 sobre denominador espaço 8 espaço. espaço D com 1 subscrito ao cubo. espaço espaço N com 1 subscrito fim da fração

Podemos substituir por C1 e calcular o novo coeficiente.

C com 2 subscrito igual a numerador 4 espaço. espaço 3 à potência de 4. espaço 3 ao cubo sobre denominador começar estilo mostrar 9 fim do estilo fim da fração C com 1 subscrito
C com 2 subscrito igual a numerador 4 espaço. espaço 3 à potência de 4. espaço 3 ao cubo sobre denominador começar estilo mostrar 3 ao quadrado fim do estilo fim da fração C com 1 subscrito
C com 2 subscrito igual a 4 espaço. espaço 3 à potência de 4. espaço 3 espaço. espaço C com 1 subscrito
C com 2 subscrito igual a 972 espaço. espaço C com 1 subscrito

Questão 28

O padrão internacional ISO 216 define os tamanhos de papel utilizados em quase todos os países. O formato-base é uma folha retangular de papel chamada de A0, cujas dimensões estão na razão 1 :√2 . A partir de então, dobra-se a folha ao meio, sempre no lado maior, definindo os demais formatos, conforme o número da dobradura. Por exemplo, A1 é a folha A0 dobrada ao meio uma vez, A2 é a folha A0 dobrada ao meio duas vezes, e assim sucessivamente, conforme figura.

Imagem associada à questão.

Um tamanho de papel bastante comum em escritórios brasileiros é o A4, cujas dimensões são 21,0 cm por 29,7 cm.

Quais são as dimensões, em centímetros, da folha A0? 

Gabarito explicado

As dimensões da folha A0 são quatro vezes as dimensões da folha A4. Logo:

A 0 igual a 4 espaço. espaço A 4
A 0 igual a 4 espaço. espaço 21 espaço x espaço 4 espaço. espaço 29 vírgula 7
A 0 igual a 84 espaço x espaço 118 vírgula 8

Questão 29

Um país decide investir recursos na educação em suas cidades que tenham um alto nível de analfabetismo. Os recursos serão divididos de acordo com a idade média da população que é analfabeta, conforme apresentado no quadro.

Imagem associada à questão.

Uma cidade desse país possui 60/100 do total de analfabetos de sua população composto por mulheres. A média de idade das mulheres analfabetas é de 30 anos, e a média de idade dos homens analfabetos é de 35 anos.

Considerando a média de idade da população analfabeta dessa cidade, ela receberá o recurso 

Gabarito explicado

Trata-se de uma média ponderada.

numerador começar estilo mostrar 60 sobre 100 fim do estilo. espaço 30 espaço mais espaço começar estilo mostrar 40 sobre 100 fim do estilo.35 sobre denominador começar estilo mostrar 60 sobre 100 fim do estilo mais começar estilo mostrar 40 sobre 100 fim do estilo fim da fração igual a 18 espaço mais espaço 14 igual a espaço 32

De acordo com as opções, a resposta é a alternativa c.

Recurso III 27 espaço menor que espaço M espaço menor ou igual a 32

Questão 30

Os alunos do curso de matemática de uma universidade desejam fazer uma placa de formatura, no formato de um triângulo equilátero, em que os seus nomes aparecerão dentro de uma região quadrada, inscrita na placa, conforme a figura.

Imagem associada à questão.

Considerando que a área do quadrado, em que aparecerão os nomes dos formandos, mede 1 m², qual é aproximadamente a medida, em metro, de cada lado do triângulo que representa a placa? (Utilize 1,7 como valor aproximado para √3 ).

Gabarito explicado

Como o triângulo é equilátero os três lados são iguais e os ângulos internos iguais a 60º.
Como a área do quadrado é de 1 m², seus lados medem 1 m. 

Imagem associada à resolução da questão.

A base do triângulo é x + 1 + x, logo:

L = 2x + 1

Onde L é a medida do lado do triângulo.

A tangente de 60º é:

tan espaço 60 º igual a 1 sobre x
raiz quadrada de 3 igual a 1 sobre x
x igual a numerador 1 sobre denominador raiz quadrada de 3 fim da fração

Como o enunciado fornece o valor aproximado da raiz de 3, vamos substituir na fórmula L = 2x + 1.

L espaço igual a espaço 2. numerador 1 sobre denominador raiz quadrada de 3 fim da fração espaço mais espaço 1
L espaço igual a numerador 2 sobre denominador 1 vírgula 7 fim da fração mais 1 espaço
L aproximadamente igual 2 vírgula 17

Questão 31

Uma construtora pretende conectar um reservatório central (Rc) em formato de um cilindro, com raio interno igual a 2 m e altura interna igual a 3,30 m, a quatro reservatórios cilíndricos auxiliares (R1, R2, R3 e R4), os quais possuem raios internos e alturas internas medindo 1,5 m.

Imagem associada à questão.

As ligações entre o reservatório central e os auxiliares são feitas por canos cilíndricos com 0,10 m de diâmetro interno e 20 m de comprimento, conectados próximos às bases de cada reservatório. Na conexão de cada um desses canos com o reservatório central há registros que liberam ou interrompem o fluxo de água.

No momento em que o reservatório central está cheio e os auxiliares estão vazios, abrem-se os quatro registros e, após algum tempo, as alturas das colunas de água nos reservatórios se igualam, assim que cessa o fluxo de água entre eles, pelo princípio dos vasos comunicantes.

A medida, em metro, das alturas das colunas de água nos reservatórios auxiliares, após cessar o fluxo de água entre eles, é

Gabarito explicado

A altura da coluna de água será a mesma, incluindo no reservatório central. 

Volume inicial no RC.

V R c espaço igual a pi r ao quadrado. h
V R c espaço igual a pi espaço. espaço 2 ao quadrado. espaço 3 vírgula 30
V R c espaço igual a pi espaço. espaço 4 espaço. espaço 3 vírgula 30
V R c espaço igual a 13 vírgula 2 pi espaço m ao cubo

Uma parte deste volume irá escoar para os tubos e reservatórios menores, mas o volume no sistema continua o mesmo, antes e depois do escoamento.

Volume em Rc = 4 . volume nos canos + 4 . volume do reservatório + volume que sobrou em Rc

13 vírgula 2 pi espaço igual a parêntese esquerdo 4 espaço. espaço pi espaço. espaço 0 vírgula 05 ao quadrado. espaço h parêntese direito espaço mais espaço parêntese esquerdo 4 espaço. espaço pi espaço. espaço 1 vírgula 5 ao quadrado espaço. espaço 1 vírgula 5 parêntese direito espaço mais espaço parêntese esquerdo pi espaço. espaço 2 ao quadrado espaço. espaço h parêntese direito

A altura pretendida é h. 

Colocando pi em evidência, simplificando e resolvendo para h, temos:

13 vírgula 2 pi espaço igual a pi parêntese esquerdo 4 espaço. espaço 0 vírgula 05 ao quadrado. espaço 20 parêntese direito espaço mais espaço parêntese esquerdo 4 espaço. espaço 1 vírgula 5 ao quadrado espaço. espaço h parêntese direito espaço mais espaço parêntese esquerdo espaço 2 ao quadrado espaço. espaço h parêntese direito
13 vírgula 2 diagonal para cima risco pi espaço igual a diagonal para cima risco pi parêntese esquerdo 4 espaço. espaço 0 vírgula 05 ao quadrado. espaço 20 parêntese direito espaço mais espaço parêntese esquerdo 4 espaço. espaço 1 vírgula 5 ao quadrado espaço. espaço h parêntese direito espaço mais espaço parêntese esquerdo espaço 2 ao quadrado espaço. espaço h parêntese direito
13 vírgula 2 igual a parêntese esquerdo 4 espaço. espaço 0 vírgula 05 ao quadrado. espaço 20 parêntese direito espaço mais espaço parêntese esquerdo 4 espaço. espaço 1 vírgula 5 ao quadrado espaço. espaço h parêntese direito espaço mais espaço parêntese esquerdo espaço 2 ao quadrado espaço. espaço h parêntese direito
13 vírgula 2 igual a parêntese esquerdo 4 espaço. espaço 0 vírgula 05 ao quadrado. espaço 20 parêntese direito espaço mais espaço parêntese esquerdo 4 espaço. espaço 1 vírgula 5 ao quadrado espaço. espaço h parêntese direito espaço mais espaço parêntese esquerdo espaço 2 ao quadrado espaço. espaço h parêntese direito
13 vírgula 2 igual a 0 vírgula 2 espaço mais espaço 9 h espaço mais espaço 4 h
13 vírgula 2 espaço menos 0 vírgula 2 igual a espaço 13 h
13 espaço igual a espaço 13 h
13 sobre 13 igual a h
1 espaço igual a espaço h

Questão 32

Em um estudo realizado pelo IBGE em quatro estados e no Distrito Federal, com mais de 5 mil pessoas com 10 anos ou mais, observou-se que a leitura ocupa, em média, apenas seis minutos do dia de cada pessoa. Na faixa de idade de 10 a 24 anos, a média diária é de três minutos. No entanto, no grupo de idades entre 24 e 60 anos, o tempo médio diário dedicado à leitura é de 5 minutos. Entre os mais velhos, com 60 anos ou mais, a média é de 12 minutos.

    A quantidade de pessoas entrevistadas de cada faixa de idade seguiu a distribuição percentual descrita no quadro.

Imagem associada à questão.

Disponível em: www.oglobo.globo.com. Acesso em: 16 ago. 2013 (adaptado). 

Os valores de x e y do quadro são, respectivamente, iguais a

Gabarito explicado

O percentual total de entrevistados é:

x + y + x = 100%

2x +  y = 1 (equação I)

A média geral de leitura é de 6 min. Esta média é ponderada pelas quantidades x e y.

6 espaço igual a espaço numerador 3 x espaço mais espaço 5 y espaço mais espaço 12 x sobre denominador x espaço mais espaço y espaço mais espaço x fim da fração
6 espaço igual a numerador 3 x espaço mais espaço 5 y espaço mais espaço 12 x sobre denominador 2 x espaço mais espaço y fim da fração
6 parêntese esquerdo 2 x espaço mais espaço y parêntese direito igual a espaço 3 x espaço mais espaço 5 y espaço mais espaço 12 x
12 x espaço mais espaço 6 y espaço igual a 15 x espaço mais espaço 5 y
6 y espaço menos espaço 5 y espaço igual a espaço 15 x espaço menos espaço 12 x
y espaço igual a espaço 3 x espaço

Substituindo na equação I

2 x espaço mais espaço 3 x espaço igual a espaço 1
5 x igual a 1
x igual a 1 quinto

Substituindo o valor de x na equação I

2 x espaço mais espaço espaço y espaço igual a espaço 1
y igual a 1 menos 2 x
y igual a 1 menos 2.1 quinto
y igual a 1 menos 2 sobre 5
y igual a 3 sobre 5

Em termos percentuais,

x = 1/5 = 0,20 = 20%

y = 3/5 = 0,60 = 60%

Questão 33

Em março de 2011, um terremoto de 9,0 graus de magnitude na escala Richter atingiu o Japão matando milhares de pessoas e causando grande destruição. Em janeiro daquele ano, um terremoto de 7,0 graus na escala Richter atingiu a cidade de Santiago Del Estero, na Argentina. A magnitude de um terremoto, medida pela escala Richter, é R igual a log abre parênteses A sobre A com 0 subscrito fecha parênteses, em que A é a amplitude do movimento vertical do solo, informado em um sismógrafo, A0 é uma amplitude de referência e log representa o logaritmo na base 10.

Disponível em: http://earthquake.usgs.gov. Acesso em: 28 fev. 2012 (adaptado).

A razão entre as amplitudes dos movimentos verticais dos terremotos do Japão e da Argentina é

Gabarito explicado

O objetivo é determinar 

A com J subscrito sobre A com A subscrito 
Sendo A com J subscrito a amplitude do terremoto do Japão e A com A subscrito a aplitude do terremoto na Argentina.

Da definição de logarítmo 

log com b subscrito a igual a c espaço

Podemos escrever 

b à potência de c igual a a

Utilizando a definição de logarítmo na relação fornecida no enunciado:

R igual a log abre parênteses A sobre A com 0 subscrito fecha parênteses

Com,

b=10 (a base 10 não precisa estar escrita)
c = R
a = A/A0

10 à potência de R igual a A sobre A com 0 subscrito

Para o terremoto do Japão:

10 à potência de 9 igual a A com J subscrito sobre A com 0 subscrito
A com 0 subscrito igual a A com J subscrito sobre 10 à potência de 9

Para o terremoro da Argentina:

10 à potência de 7 igual a A com A subscrito sobre A com 0 subscrito
A com 0 subscrito igual a A com A subscrito sobre 10 à potência de 7

Igualando os valores de referência 

A com 0 subscrito igual a A com 0 subscrito
A com J subscrito sobre 10 à potência de 9 igual a espaço em branco sobre 10 à potência de 7
A com J subscrito sobre A com A subscrito igual a 10 à potência de 9 sobre 10 à potência de 7 igual a 10 ao quadrado igual a 100

Questão 34

Devido ao não cumprimento das metas definidas para a campanha de vacinação contra a gripe comum e o vírus H1N1 em um ano, o Ministério da Saúde anunciou a prorrogação da campanha por mais uma semana. A tabela apresenta as quantidades de pessoas vacinadas dentre os cinco grupos de risco até a data de início da prorrogação da campanha.

Imagem associada à questão.

Qual é a porcentagem do total de pessoas desses grupos de risco já vacinadas?

Gabarito explicado

O total da população de risco é: 4,5 + 2,0 + 2,5 + 0,5 + 20,5 = 30

O total já vacinado é: 0,9 + 1,0 + 1,5 + 0,4 + 8,2 = 12

12 sobre 30 igual a 0 vírgula 4 igual a 0 vírgula 4 espaço. espaço 100 espaço igual a 40 sinal de percentagem

Questão 35

Um ciclista quer montar um sistema de marchas usando dois discos dentados na parte traseira de sua bicicleta, chamados catracas. A coroa é o disco dentado que é movimentado pelos pedais da bicicleta, sendo que a corrente transmite esse movimento às catracas, que ficam posicionadas na roda traseira da bicicleta. As diferentes marchas ficam definidas pelos diferentes diâmetros das catracas, que são medidos conforme indicação na figura.

Imagem associada à questão.

O ciclista já dispõe de uma catraca com 7 cm de diâmetro e pretende incluir uma segunda catraca, de modo que, à medida em que a corrente passe por ela, a bicicleta avance 50% a mais do que avançaria se a corrente passasse pela primeira catraca, a cada volta completa dos pedais.

O valor mais próximo da medida do diâmetro da segunda catraca, em centímetro e com uma casa decimal, é

Gabarito explicado

O comprimento da circunferência é dado por: 2. pi. r

O raio da primeira catraca é de 3,5 cm.

Para a primeira catraca temos: 2 espaço. pi. espaço 3 vírgula 5 igual a 7 pi espaço c m para uma volta.

Para a segunda, deve haver um aumento de 50% no avanço, ou, mais meia volta.

Se uma volta completa são 2 espaço pi espaço r, meia volta é pi espaço r. Assim, uma volta e meia são 2 pi r espaço mais espaço pi r espaço igual a espaço 3 pi r.

Com o mesmo gira de 7 pi agora queremos que a bicicleta avance 3 pi r.

3 pi r igual a 7 pi
3 diagonal para cima risco pi r igual a 7 diagonal para cima risco pi
3 r espaço igual a espaço 7
r igual a 7 sobre 3 aproximadamente igual 2 vírgula 33

Como o diâmetro são duas vezes o raio:

D igual a 2 r espaço igual a espaço 2.2 vírgula 33 igual a 4 vírgula 66

A alternativa mais próxima é a letra c) 4,7.

Questão 36

No desenvolvimento de um novo remédio, pesquisadores monitoram a quantidade Q de uma substância circulando na corrente sanguínea de um paciente, ao longo do tempo t. Esses pesquisadores controlam o processo, observando que Q é uma função quadrática de t. Os dados coletados nas duas primeiras horas foram:

Imagem associada à questão.

     Para decidir se devem interromper o processo, evitando riscos ao paciente, os pesquisadores querem saber, antecipadamente, a quantidade da substância que estará circulando na corrente sanguínea desse paciente após uma hora do último dado coletado.

Nas condições expostas, essa quantidade (em miligrama) será igual a

Gabarito explicado

Objetivo
Determinar a quantidade Q no instante t=3. 

A função é do 2º grau
reto Q parêntese esquerdo reto x parêntese direito igual a at ao quadrado mais bt mais reto c

Para determinar os coeficientes a, b e c, substituimos pelos valores da tabela, para cada instante t.

Para t = 0, Q = 1

reto Q parêntese esquerdo reto x parêntese direito igual a at ao quadrado mais bt mais reto c
1 espaço igual a reto a.0 ao quadrado mais espaço reto b.0 espaço mais espaço reto c
1 espaço igual a espaço reto c

Para t = 1, Q = 4

reto Q parêntese esquerdo reto x parêntese direito igual a at ao quadrado mais bt mais reto c
4 espaço igual a espaço reto a.1 ao quadrado mais reto b.1 mais 1
4 menos 1 igual a reto a mais reto b
3 igual a reto a mais reto b espaço parêntese esquerdo equação espaço reto I parêntese direito

Para t = 2, Q = 6  

reto Q parêntese esquerdo reto x parêntese direito igual a at ao quadrado mais bt mais reto c
6 igual a reto a.2 ao quadrado mais reto b.2 mais 1
6 igual a 4 reto a mais 2 reto b mais 1
6 menos 1 igual a 4 reto a mais 2 reto b
5 igual a 4 reto a mais 2 reto b espaço parêntese esquerdo equação espaço II parêntese direito

Isolando a na equação I

3 = a + b
a = 3 - b

Substituindo na equação II

5 = 4(3-b) + 2b
5 = 12 - 4b +  2b
5 = 12 -2b
2b = 12 - 5
2b = 7
b = 7/2

Uma vez que b foi determinado, substituimos novamente seu valor.

a = 3 - b
a = 3 - 7/2
a = -1/2

Substituindo os valores de a, b e c na fórmula geral e calculando para t = 3.

a = -1/2
b = 7/2
c = 1

reto Q parêntese esquerdo reto x parêntese direito igual a menos 1 meio t ao quadrado mais 7 sobre 2 t mais 1
reto Q parêntese esquerdo 3 parêntese direito igual a menos 1 meio. espaço 3 ao quadrado mais 7 sobre 2.3 espaço mais espaço 1
reto Q parêntese esquerdo 3 parêntese direito igual a menos 1 meio.9 espaço mais espaço 21 sobre 2 mais 1
reto Q parêntese esquerdo 3 parêntese direito igual a menos 9 sobre 2 mais 21 sobre 2 mais 1
reto Q parêntese esquerdo 3 parêntese direito igual a 12 sobre 2 mais 1
reto Q parêntese esquerdo 3 parêntese direito igual a 6 mais 1
reto Q parêntese esquerdo 3 parêntese direito igual a 7

Questão 37

O instrumento de percussão conhecido como triângulo é composto por uma barra fina de aço, dobrada em um formato que se assemelha a um triângulo, com uma abertura e uma haste, conforme ilustra a Figura 1.

Imagem associada à questão.

Uma empresa de brindes promocionais contrata uma fundição para a produção de miniaturas de instrumentos desse tipo. A fundição produz, inicialmente, peças com o formato de um triângulo equilátero de altura h, conforme ilustra a Figura 2. Após esse processo, cada peça é aquecida, deformando os cantos, e cortada em um dos vértices, dando origem à miniatura. Assuma que não ocorram perdas de material no processo de produção, de forma que o comprimento da barra utilizada seja igual a o perímetro do triângulo equilátero representado na Figura 2.

Considere 1,7 como valor aproximado para √3.

Nessas condições, o valor que mais se aproxima da medida do comprimento da barra, em centímetro, é

Gabarito explicado

Objetivo
Determinar o comprimento da barra, que é o perímetro do triângulo.

Resolução
O perímetro do triângulo é 3L, pois L + L + L = 3L.

Da figura 2, considerando a metade do triângulo equilátero original, temos um triângulo retângulo.

Imagem associada à resolução da questão.

Utilizando o teorema de pitágoras:

L ao quadrado igual a abre parênteses L sobre 2 fecha parênteses ao quadrado mais espaço 8 ao quadrado
L ao quadrado igual a L ao quadrado sobre 4 mais 64
L ao quadrado espaço menos espaço L ao quadrado sobre 4 igual a 64
numerador 4 L ao quadrado menos L ao quadrado sobre denominador 4 fim da fração igual a 64
numerador 3 L ao quadrado sobre denominador 4 fim da fração igual a 64
3 L ao quadrado igual a 64 espaço. espaço 4
3 L ao quadrado igual a 256
L ao quadrado igual a 256 sobre 3
L igual a raiz quadrada de 256 sobre 3 fim da raiz
L igual a numerador raiz quadrada de 256 sobre denominador raiz quadrada de 3 fim da fração
L igual a numerador 16 sobre denominador raiz quadrada de 3 fim da fração

Racionalizando para retirar a raíz do denominador:

L igual a numerador 16 sobre denominador raiz quadrada de 3 fim da fração. numerador raiz quadrada de 3 sobre denominador raiz quadrada de 3 fim da fração
L igual a numerador 16 raiz quadrada de 3 sobre denominador 3 fim da fração
L espaço igual a numerador 16 espaço. espaço 1 vírgula 7 sobre denominador 3 fim da fração
L espaço igual a numerador 27 vírgula 2 sobre denominador 3 fim da fração

Como o perímetro é igual a 3L

P espaço igual a espaço 3 espaço. espaço numerador 27 vírgula 2 sobre denominador 3 fim da fração
P espaço igual a diagonal para cima risco 3 espaço. espaço numerador 27 vírgula 2 sobre denominador diagonal para cima risco 3 fim da fração
P igual a 27 vírgula 2 espaço c m

Questão 38

Devido aos fortes ventos, uma empresa exploradora de petróleo resolveu reforçar a segurança de suas plataformas marítimas, colocando cabos de aço para melhor afixar a torre central.

Considere que os cabos ficarão perfeitamente esticados e terão uma extremidade no ponto médio das arestas laterais da torre central (pirâmide quadrangular regular) e a outra no vértice da base da plataforma (que é um quadrado de lados paralelos aos lados da base da torre central e centro coincidente com o centro da base da pirâmide), como sugere a ilustração.

Imagem associada à questão.

Se a altura e a aresta da base da torre central medem, respectivamente, 24 m e 6√2 m e o lado da base da plataforma mede 19√2 m, então a medida, em metros, de cada cabo será igual a

Gabarito explicado

Objetivo
Determinar o comprimento de cada cabo.

Dados
O cabo está fixo no ponto médio da aresta da pirâmide. 
Altura da torre 24 m.
Medida da aresta da base da pirâmide 6√2 m.
Medida da aresta do lado da plataforma 19√2 m.

Resolução
Para determinar o comprimento do cabo determinamos a altura do ponto de fixação em relação à base da pirâmide e a distância da projeção do cabo, até a fixação no vértice da plataforma. 

Uma vez que temos às duas medidas, forma-se um triângulo retângulo e, o comprimento do cabo é determinado pelo teorema de Pitágoras.

Imagem associada à resolução da questão.

C é o comprimento do cabo (objetivo da questão)
h altura em relação à base da plataforma.
p é a projeção do cabo na base da plataforma.

reto C ao quadrado igual a reto h ao quadrado mais espaço reto p ao quadrado
reto C igual a raiz quadrada de reto h ao quadrado mais espaço reto p ao quadrado fim da raiz

Passo 1: altura do ponto de fixação em relação à base da plataforma.
Analisando a pirâmide em sua vista lateral podemos determinar a altura em que o cabo está fixo em relação à base da plataforma.

Imagem associada à resolução da questão.

O triângulo menor é semalhante ao maior, visto que seus ângulos são iguais. 

Vale a proporção:

reto H sobre reto h igual a reto A sobre reto a

Onde,
H é a altura da pirâmide = 24 m.
h é a altura do triângulo menor.
A a aresta da torre.
a é a hipotenusa do triângulo menor. 

Como o cabo está no ponto médio de A, a hipotenusa do triângulo menor, é a metade de A.

reto a igual a reto A sobre 2

Substituindo na proporção, temos:

reto H sobre reto h igual a numerador reto A sobre denominador começar estilo mostrar reto A sobre 2 fim do estilo fim da fração
reto H sobre reto h igual a numerador 2 A sobre denominador A fim da fração
reto H sobre reto h igual a 2
reto h igual a reto H sobre 2

Logo, h = 24/2 = 12 m

Passo 2: projeção p cabo em relação à base da plataforma.

Analisando a vista superior (olhando de cima para baixo), verifica-se que o comprimento p é composto de dois segmentos.

Imagem associada à resolução da questão.

Os pontos pretos representam as fixações do cabo.

Para determinar o seguimento p, começamos calculando a diagonal do quadrado maior, que é a plataforma. 

Para isto, utilizamos o teorema de Pitágoras.

D igual a raiz quadrada de abre parênteses 19 raiz quadrada de 2 fecha parênteses ao quadrado espaço mais abre parênteses 19 raiz quadrada de 2 fecha parênteses ao quadrado espaço fim da raiz
D igual a raiz quadrada de 361.2 espaço mais 361.2 espaço espaço fim da raiz
D igual a raiz quadrada de 722 espaço mais espaço 722 fim da raiz
D igual a raiz quadrada de 1 espaço 444 fim da raiz
D igual a 38

Podemos descartar a metade da diagonal.

Imagem associada à resolução da questão.

Imagem associada à resolução da questão.

38 / 2 = 19 m

Agora descartamos mais 1/4 da diagonal do quadrado interno, que representa a torre.

Imagem associada à resolução da questão.

Imagem associada à resolução da questão.

Os pontos destacados na última figura são as extremidades do cabo e p, a projeção do cabo sobre o piso da plataforma.

Para calcular a diagonal do quadrado interno, utilizamos o teorema de Pitágoras.

d igual a raiz quadrada de abre parênteses 6 √ 2 fecha parênteses ao quadrado mais abre parênteses 6 √ 2 fecha parênteses ao quadrado fim da raiz
d igual a raiz quadrada de 36 espaço. espaço 2 mais 36 espaço. espaço 2 fim da raiz
d igual a raiz quadrada de 72 espaço mais espaço 72 fim da raiz
d igual a raiz quadrada de 144
d igual a 12 espaço m

Logo, 

1 quarto espaço d e espaço 12 igual a 3

Assim, a medida da projeção é:

p igual a D sobre 2 menos d sobre 4
p igual a D sobre 2 menos 1 quarto
p igual a 38 sobre 2 menos 12 sobre 4
p igual a 19 menos 3
p igual a 16 espaço m

Passo 3: cálculo do comprimento do cabo c

Voltando a figura inicial, determinamos p com o uso do teorema de Pitágoras.

Imagem associada à resolução da questão.

C igual a raiz quadrada de p ao quadrado espaço mais espaço h ao quadrado fim da raiz
C igual a raiz quadrada de 16 ao quadrado mais 12 ao quadrado fim da raiz
C igual a raiz quadrada de 256 espaço mais espaço 144 fim da raiz
C igual a raiz quadrada de 400 espaço m

Conclusão

Cada cabo mede raiz quadrada de 400 m. Esta é a forma como a resposta está apresentada. Também pode-se dizer que cada cabo mede 20 m. 

Questão 39

A estimativa do número de indivíduos de uma população de animais frequentemente envolve a captura, a marcação e, então, a liberação de alguns desses indivíduos. Depois de um período, após os indivíduos marcados se misturarem com os não marcados, realiza-se outra amostragem. A proporção de indivíduos desta segunda amostragem que já estava marcada pode ser utilizada para estimar o tamanho da população, aplicando-se a fórmula:

reto m com 2 subscrito sobre reto n com 2 subscrito igual a reto n com 1 subscrito sobre reto N

Onde:

n1= número de indivíduos marcados na primeira amostragem;

n2= número de indivíduos marcados na segunda amostragem;

m2= número de indivíduos da segunda amostragem que foram marcados na primeira amostragem;

N= tamanho estimado da população total.

SADAVA, D. et al. Vida: a ciência da biologia. Porto Alegre: Artmed, 2010 (adaptado).

Durante uma contagem de indivíduos de uma população, na primeira amostragem foram marcados 120; na segunda amostragem foram marcados 150, dos quais 100 já possuíam a marcação.

O número estimado de indivíduos dessa população é

Gabarito explicado

Objetivo
Determinar o número de indivíduos N.

Dados
n1 = 120
n2 = 150
m2 = 100

Substituindo na fórmula, temos:

reto m com 2 subscrito sobre reto n com 2 subscrito igual a reto n com 1 subscrito sobre reto N
100 sobre 150 igual a 120 sobre reto N

Isolando N

100 N igual a 120 espaço. espaço 150
N igual a espaço numerador 120 espaço. espaço 150 sobre denominador 100 fim da fração
N igual a numerador 12 diagonal para cima risco 0 espaço. espaço 15 diagonal para cima risco 0 sobre denominador 1 diagonal para cima risco 0 diagonal para cima risco 0 fim da fração
N igual a 180

Questão 40

Um casal e seus dois filhos saíram, com um corretor de imóveis, com a intenção de comprar um lote onde futuramente construiriam sua residência. No projeto da casa, que esta família tem em mente, irão necessitar de uma área de pelo menos 400 m². Após algumas avaliações, acaram de decidir entre os lotes 1 e 2 da figura, em forma de paralelogramos, cujos preços são R$ 100 000,00 e R$ 150 000,00, respectivamente.     

Imagem associada à questão.
Use √3/2 , 1/2 e 1,7 como aproximações, respectivamente, para sen(60°), cos(60°) e √3 .

Para colaborarem na decisão, os envolvidos fizeram as seguintes argumentações:

Pai: Devemos comprar o Lote 1, pois como uma de suas diagonais é maior do que as diagonais do Lote 2, o Lote 1 também terá maior área;

Mãe: Se desconsiderarmos os preços, poderemos comprar qualquer lote para executar nosso projeto, pois tendo ambos o mesmo perímetro, terão também a mesma área;

Filho 1: Devemos comprar o Lote 2, pois é o único que tem área suficiente para a execução do projeto;

Filho 2: Devemos comprar o Lote 1, pois como os dois lotes possuem lados de mesma medida, terão também a mesma área, porém o Lote 1 é mais barato;

Corretor: Vocês devem comprar o Lote 2, pois é o que tem menor custo por metro quadrado.

A pessoa que argumentou corretamente para a compra do terreno foi o(a)

Gabarito explicado

O projeto requer pelo menos 400 m².

Cálculo das áreas

Lote 2

Área = 30 x 15 = 450 m²

Lote 1

Temos que a base é 30 m e a altura podemos determinar utilizando o seno de 60º.

Imagem associada à resolução da questão.

s e n espaço 60 º espaço igual a espaço h sobre 15
numerador raiz quadrada de 3 sobre denominador 2 fim da fração igual a h sobre 15
h igual a numerador 15 raiz quadrada de 3 sobre denominador 2 fim da fração

Utilizando o valor de raiz quadrada de 3= 1,7, fornecido pela questão:

h igual a numerador 15 espaço. espaço 1 vírgula 7 sobre denominador 2 fim da fração igual a numerador 25 vírgula 5 sobre denominador 2 fim da fração igual a 12 vírgula 75

A área do lote 1 é:

A com 1 subscrito igual a 12 vírgula 75 espaço. espaço 30 espaço igual a espaço 382 vírgula 5 espaço m ao quadrado

Sobre as argumentações:. 

O filho 1 está correto. 

Em relação ao corretor, de qualquer forma o lote 1 não satisfaz o projeto. Ainda:

Lote 1
numerador 100 espaço 000 sobre denominador 382 vírgula 5 fim da fração aproximadamente igual 261 vírgula 43 espaço R $ dividido por m ao quadrado

Lote 2

numerador 150 espaço 000 sobre denominador 450 fim da fração aproximadamente igual 333 vírgula 33 espaço R $ dividido por m ao quadrado

O lote 2 tem o maior custo por metro quadrado.

Pai: ERRADO. A área não é determinada pela diagonal.

Mãe: ERRADA. A área não é determinada pelo perímetro.

Filho 2: ERRADO. A área não é determinada considerando apenas a medida dos lados em formas diferentes. 

Questão 41

Considere que um professor de arqueologia tenha obtido recursos para visitar 5 museus, sendo 3 deles no Brasil e 2 fora do país. Ele decidiu restringir sua escolha aos museus nacionais e internacionais relacionados na tabela a seguir.

Imagem associada à questão.

De acordo com os recursos obtidos, de quantas maneiras diferentes esse professor pode escolher os 5 museus para visitar?

Gabarito explicado

Há quatro nacionais e quatro internacionais.

Serão visitados cindo ao total, sendo 3 nacionais e 2 internacionais.

De quantos modos pode-se escolher 3 opções entre 4 e, 2 opções entre 4.

Pelo princípio fundamental da contagem:

3 opções entre 4 . 2 opções entre 4

Trata-se de uma combinação para os nacionais e para os internacionais.

Para os museus nacionais:

C com 4 subscrito com 3 sobrescrito igual a numerador 4 fatorial sobre denominador 3 fatorial espaço parêntese esquerdo 4 menos 3 parêntese direito fatorial fim da fração igual a numerador 4 espaço. espaço riscado diagonal para cima sobre 3 fatorial fim do riscado sobre denominador riscado diagonal para cima sobre 3 fatorial fim do riscado espaço 1 fatorial fim da fração igual a 4

Para os museus internacionais:

C com 4 subscrito com 2 sobrescrito igual a numerador 4 fatorial sobre denominador 2 fatorial espaço parêntese esquerdo 4 menos 2 parêntese direito fatorial fim da fração igual a numerador 4 fatorial sobre denominador 2 fatorial espaço 2 fatorial fim da fração igual a numerador 4 espaço. espaço 3 espaço. espaço riscado diagonal para cima sobre 2 fatorial fim do riscado sobre denominador riscado diagonal para cima sobre 2 fatorial fim do riscado espaço 2 fatorial fim da fração igual a 12 sobre 2 igual a 6

Fazendo o produto, temos:

6 . 4 = 24 opções

Questão 42

Um confeiteiro deseja fazer um bolo cuja receita indica a utilização de açúcar e farinha de trigo em quantidades fornecidas em gramas. Ele sabe que uma determinada xícara utilizada para medir os ingredientes comporta 120 gramas de farinha de trigo e que três dessas xícaras de açúcar correspondem, em gramas, a quatro de farinha de trigo.

Quantos gramas de açúcar cabem em uma dessas xícaras?

Gabarito explicado

1 xícara de trigo = 120g

3 xícaras de açucar = 4 xícaras de trigo
3 xícaras de açucar = 4 . 120
3 xícaras de açucar = 480

Logo, 1 xícara de açucar = 480 / 3 = 160g

Questão 43

Os sistemas de cobrança dos serviços de táxi nas cidades A e B são distintos. Uma corrida de táxi na cidade A é calculada pelo valor fixo da bandeirada, que é de R$ 3,45, mais R$ 2,05 por quilômetro rodado. Na cidade B, a corrida é calculada pelo valor fixo da bandeirada, que é de R$ 3,60, mais R$ 1,90 por quilômetro rodado.

Uma pessoa utilizou o serviço de táxi nas duas cidades para percorrer a mesma distância de 6 km.

Qual o valor que mais se aproxima da diferença, em reais, entre as médias do custo por quilômetro rodado ao final das duas corridas?

Gabarito explicado

Dados
6 km rodados nas duas cidades.

Custo total na cidade A
A = 3,45 + 2,05 . 6 = 15,75

Custo por km na cidade A (média por km)
15,75 / 6 = 2,625

Custo total na cidade B
B = 3,60 + 1,90 . 6 = 15

Custo por km na cidade B (média por km)
15 / 6 = 2,5

Diferença entre as médias
2,625 - 2,5 = 0,125

A resposta mais próxima é a letra e) 0,13.

Questão 44

Num campeonato de futebol de 2012, um time sagrou-se campeão com um total de 77 pontos (P) em 38 jogos, tendo 22 vitórias (V), 11 empates (E) e 5 derrotas (D). No critério adotado para esse ano, somente as vitórias e empates têm pontuações positivas e inteiras. As derrotas têm valor zero e o valor de cada vitória é maior que o valor de cada empate.

Um torcedor, considerando a fórmula da soma de pontos injusta, propôs aos organizadores do campeonato que, para o ano de 2013, o time derrotado em cada partida perca 2 pontos, privilegiando os times que perdem menos ao longo do campeonato. Cada vitória e cada empate continuariam com a mesma pontuação de 2012.

Qual a expressão que fornece a quantidade de pontos (P), em função do número de vitórias (V), do número de empates (E) e do número de derrotas (D), no sistema de pontuação proposto pelo torcedor para o ano de 2013?

Gabarito explicado

Objetivo
Determinar a quantidade de pontos P em função do número de vitórias V, derrotas D e empates E, segundo o critério sugerido pelo torcedor.

Dados
Inicialmente:

  • Vitórias e empates resultam positivo. 
  • Vitória vale mais que empate.
  • Derrotas valem 0.

Sugestão do torcedor

  • Derrota perde 2 pontos e vitória e empate continuam iguais. 

Resolução

Inicialmente a função deve ser:

P = xV + yE - 2D 

O termo -2D se refere a perda de 2 pontos a cada derrota. 

Falta identificarmos os coeficientes: x para as vitórias e y, para os empates. 

Por eliminação, restam apenas as opções b) e d).

Como na opção b) o termo E não aparece, significa que seu coeficiente é zero 0. Mas a regra diz que devem ser positivos, portanto, diferente de zero.

Desta forma, resta apenas a opção d) P = 3V + E - 2D.

Questão 45

Um laboratório realizou um teste para calcular a velocidade de reprodução de um tipo de bactéria. Para tanto, realizou um experimento para observar a reprodução de uma quantidade x dessas bactérias por um período de duas horas. Após esse período, constava no habitáculo do experimento uma população de 189 440 da citada bactéria. Constatou-se, assim, que a população de bactérias dobrava a cada 0,25 hora.
A quantidade inicial de bactérias era de

Gabarito explicado

Objetivo 
Determinar a quantidade inicial x.

Dados
Evolução durante duas horas.
Dobra a cada 0,25h
População final = 189 440

Resolução
0,25h = 15 min

2h = 120 min

120/15 = 8

Isto significa que a população dobra oito vezes.

Início x

1ª dobra: 2x
2ª dobra: 4x
3ª dobra: 8x
4ª dobra: 16x
5ª dobra: 32x
6ª dobra: 64x
7ª dobra: 128x
8ª dobra: 256x

256x = 189 440

x = 189 440/256
x = 740

Tempo restante 3h 00min 00s
Acertos
40/50
40 Corretas
7 Erradas
3 Não respondidas
Acertou em 40 questões de um total de 50 = 80% (porcentagem de respostas certas)
Tempo de simulado: 1 hora e 33 minutos
Questões (clique para voltar à questão e checar o gabarito)
Faltam 8 questões para você terminar.
Atenção!
Deseja finalizar o simulado?

Referências Bibliográficas

Inep - Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira

https://www.gov.br/inep/pt-br/areas-de-atuacao/avaliacao-e-exames-educacionais/enem

Rafael C. Asth
Rafael C. Asth
Professor de Matemática licenciado, pós-graduado em Ensino da Matemática e da Física e Estatística. Atua como professor desde 2006 e cria conteúdos educacionais online desde 2021.