Trigonometria no Triângulo Retângulo

Rosimar Gouveia
Rosimar Gouveia
Professora de Matemática e Física

A trigonometria no triângulo retângulo é o estudo sobre os triângulos que possuem um ângulo interno de 90°, chamado de ângulo reto.

Lembre-se que a trigonometria é a ciência responsável pelas relações estabelecidas entre os triângulos. Eles são figuras geométricas planas compostas de três lados e três ângulos internos.

O triângulo chamado equilátero possui os lados com medidas iguais. O isósceles possui dois lados com medidas iguais. Já o escaleno tem os três lados com medidas diferentes.

No tocante aos ângulos dos triângulos, os ângulos internos maiores que 90° são chamados de obtusângulos. Já os ângulos internos menores que 90° são denominados de acutângulos.

Além disso, a soma dos ângulos internos de um triângulo será sempre 180°.

Composição do Triângulo Retângulo

O triângulo retângulo é formado:

  • Catetos: são os lados do triângulo que formam o ângulo reto. São classificados em: cateto adjacente e cateto oposto.
  • Hipotenusa: é o lado oposto ao ângulo reto, sendo considerado o maior lado do triângulo retângulo.

Trigonometria no Triângulo Retângulo

Segundo o Teorema de Pitágoras, a soma dos quadrado dos catetos de um triângulo retângulo é igual ao quadrado de sua hipotenusa:

h2 = ca2 + co2

Leia também:

Relações Trigonométricas do Triângulo Retângulo

As razões trigonométricas são as relações existentes entre os lados de um triângulo retângulo. As principais são o seno, o cosseno e a tangente.

seno

Lê-se cateto oposto sobre a hipotenusa.

cosseno

Lê-se cateto adjacente sobre a hipotenusa.

tangente

Lê-se cateto oposto sobre o cateto adjacente.

Trigonometria no Triângulo Retângulo

Círculo trigonométrico e as razões trigonométricas

O círculo trigonométrico é utilizado para auxiliar nas relações trigonométricas. Acima, podemos encontrar as principais razões, sendo que o eixo vertical corresponde ao seno e o eixo horizontal ao cosseno. Além delas, temos as razões inversas: secante, cossecante e cotangente.

secante

Lê-se um sobre o cosseno.

cosecante

Lê-se um sobre o seno.

Cotangente

Lê-se cosseno sobre o seno.

Leia também:

Ângulos Notáveis

Os chamados ângulos notáveis são aqueles que aparecem com mais frequência, a saber:

Relações Trigonométricas 30° 45° 60°
Seno 1/2 √2/2 √3/2
Cosseno √3/2 √2/2 1/2
Tangente √3/3 1 √3

Saiba mais:

Exercício Resolvido

Num triângulo retângulo a hipotenusa mede 8 cm e um dos ângulos internos possui 30°. Qual o valor dos catetos oposto (x) e adjacente (y) desse triângulo?

De acordo com as relações trigonométricas, o seno é representado pela seguinte relação:

Sen = cateto oposto/hipotenusa

Sen 30° = x/8
½ = x/8
2x = 8
x = 8/2
x = 4

Logo, o cateto oposto desse triângulo retângulo mede 4 cm.

A partir disso, se o quadrado da hipotenusa é a soma dos quadrados de seus catetos, temos:

Hipotenusa2 = Cateto oposto2 + Cateto adjacente2

82 = 42+y2
82 - 42 = y2
64 - 16 = y2
y2 = 48
y = √48

Logo, o cateto adjacente desse triângulo retângulo mede √48 cm.

Assim, podemos concluir que os lados desse triângulo medem 8 cm, 4 cm e √48 cm. Já seus ângulos internos são de 30° (acutângulo), 90° (reto) e 60° (acutângulo), visto que a soma dos ângulos internos dos triângulos sempre será 180°.

Veja como calcular a medida da hipotenusa.

Exercícios de Vestibular

1. (Vunesp) O cosseno do menor ângulo interno de um triângulo retângulo é √3/2. Se a medida da hipotenusa desse triângulo é 4 unidades, então é verdade que um dos catetos desse triângulo mede, na mesma unidade,

a) 1
b) √3
c) 2
d) 3
e) √3/3

Alternativa c) 2

2. (FGV) Na figura a seguir, o segmento BD é perpendicular ao segmento AC.

Exercício FGV

Se AB = 100m, um valor aproximado para o segmento DC é:

a) 76m.
b) 62m.
c) 68m.
d) 82m.
e) 90m.

Alternativa d) 82m.

3. (FGV) A plateia de um teatro, vista de cima para baixo, ocupa o retângulo ABCD da figura a seguir, e o palco é adjacente ao lado BC. As medidas do retângulo são AB = 15m e BC = 20m.

exercício FGV

Um fotógrafo que ficará no canto A da plateia deseja fotografar o palco inteiro e, para isso, deve conhecer o ângulo da figura para escolher a lente de abertura adequada.

O cosseno do ângulo da figura acima é:

a) 0,5
b) 0,6
c) 0,75
d) 0,8
e) 1,33

Alternativa b) 0,6

4. (Unoesc) Um homem de 1,80 m encontra-se a 2,5 m de distância de uma árvore, conforme ilustração a seguir. Sabendo-se que o ângulo α é de 42°, determine a altura dessa árvore.

Questão Unoesc

Use:

Seno 42° = 0,669
Cosseno 42° = 0,743
Tangente de 42° = 0,90

a) 2,50 m.
b) 3,47 m.
c) 3,65 m.
d) 4,05 m.

Alternativa d) 4,05 m.

5. (Enem-2013) As torres Puerta de Europa são duas torres inclinadas uma contra a outra, construídas numa avenida de Madri, na Espanha. A inclinação das torres é de 15° com a vertical e elas têm, cada uma, uma altura de 114 m (a altura é indicada na figura como o segmento AB). Estas torres são um bom exemplo de um prisma oblíquo de base quadrada e uma delas pode ser observada na imagem.

Exercício Enem

Disponível em: www.flickr.com. Acesso em: 27 mar. 2012.

Utilizando 0,26 como valor aproximado para a tangente de 15° e duas casas decimais nas operações, descobre-se que a área da base desse prédio ocupa na avenida um espaço:

a) menor que 100m2.
b) entre 100 m2 e 300 m2.
c) entre 300 m2 e 500 m2.
d) entre 500 m2 e 700 m2.
e) maior que 700 m2.

Alternativa e) maior que 700 m2.

Rosimar Gouveia
Rosimar Gouveia
Bacharel em Meteorologia pela Universidade Federal do Rio de Janeiro (UFRJ) em 1992, Licenciada em Matemática pela Universidade Federal Fluminense (UFF) em 2006 e Pós-Graduada em Ensino de Física pela Universidade Cruzeiro do Sul em 2011.