Exercícios de Frações

Rafael C. Asth
Rafael C. Asth
Professor de Matemática e Física

Teste seus conhecimentos com os exercícios propostos e com questões que caíram no vestibular sobre frações e operações com frações.

Não deixe de conferir as resoluções comentadas para adquirir mais conhecimento.

Exercícios propostos (com resolução)

Exercício 1

As árvores de um parque estão dispostas de tal maneira que se construíssemos uma linha entre a primeira árvore (A) de um trecho e a última árvore (B) conseguiríamos visualizar que elas estão situadas à mesma distância uma das outras.

Exercício de frações

De acordo com a imagem acima, que fração que representa a distância entre a primeira e a segunda árvore?

a) 1/6
b) 2/6
c) 1/5
d) 2/5

Resposta correta: c) 1/5.

Uma fração corresponde à representação de algo que foi dividido em partes iguais.

Observe que, pela imagem, o espaço entre a primeira árvore e a última foi dividido em cinco partes. Portanto, este é o denominador da fração.

Já a distância entre a primeira e a segunda árvore é representada por apenas uma das partes e, por isso, trata-se do numerador.

tabela linha com célula com 1em moldura inferior fim da célula seta para a esquerda célula com numerador espaço parêntese esquerdo trecho espaço entre espaço reto a espaço primeira espaço reto e espaço reto a espaço segunda espaço árvore parêntese direito fim da célula linha com 5 seta para a esquerda célula com denominador espaço parêntese esquerdo número espaço de espaço partes espaço que espaço reto a espaço distância espaço total espaço foi espaço dividida parêntese direito fim da célula fim da tabela

Sendo assim, a fração que representa o espaço entre a primeira e a segunda árvore é 1/5, pois entre os 5 trechos em que o percurso foi dividido as duas árvores estão situadas no primeiro.

Exercício 2

Observe a barra de chocolate a seguir e responda: quantos quadradinhos deve-se comer para consumir 5/6 da barra?

Barra de chocolate com 18 quadradinhos

a) 15
b) 12
c) 14
d) 16

Resposta correta: a) 15 quadradinhos.

Se contarmos quantos quadradinhos de chocolate temos na barra apresentada na imagem encontraremos o número de 18.

O denominador da fração consumida (5/6) é 6, ou seja, a barra foi dividida em 6 partes iguais, cada uma com 3 quadradinhos.

frações com imagens representativas

Para consumir a fração de 5/6 então devemos pegar 5 pedaços de 3 quadradinhos cada e, assim, consumir 15 quadradinhos de chocolate.

Barra de chocolate com 18 quadradinhos, dos quais 3 estão separados representando a fração 1/6

Confira outra maneira de resolver essa questão.

Como a barra possui 18 quadradinhos de chocolate e deve-se consumir 5/6, podemos realizar uma multiplicação e encontrar o número de quadradinhos que corresponde a essa fração.

18 espaço reto x espaço 5 sobre 6 igual a espaço numerador 18 reto x 5 sobre denominador 6 fim da fração espaço igual a espaço 90 sobre 6 espaço igual a espaço 15

Sendo assim, come-se 15 quadradinhos para consumir 5/6 da barra.

Exercício 3

Mário preencheu 3/4 de uma jarra de 500 mL com refresco. Na hora de servir a bebida, ele distribuiu o líquido igualmente em 5 copos de 50 mL, ocupando 2/4 da capacidade de cada um. Com base nestes dados responda: que fração de líquido restou na jarra?

jarro de 500ml com líquido ao lado de 5 copos de 50 ml com líquido pela metade

a) 1/4
b) 1/3
c) 1/5
d) 1/2

Resposta correta: d) 1/2.

Para responder a esse exercício precisamos realizar as operações com frações.

1º passo: calcular a quantidade de refresco na jarra.

500 espaço mL espaço reto x espaço 3 sobre 4 espaço igual a espaço numerador 500 espaço reto x espaço 3 sobre denominador 4 fim da fração espaço igual a espaço 1500 sobre 4 espaço igual a espaço 375 espaço mL

2º passo: calcular a quantidade de refresco nos copos

50 espaço mL espaço reto x espaço 2 sobre 4 igual a espaço numerador 50 espaço reto x espaço 2 sobre denominador 4 fim da fração espaço igual a espaço 100 sobre 4 espaço igual a espaço 25 espaço mL

Como existem 5 copos, então o total de líquido nos copos é:

5 espaço reto x espaço 25 espaço mL espaço igual a espaço 125 espaço mL

3º passo: calcular a quantidade de líquido que sobrou na jarra

375 espaço mL espaço menos espaço 125 espaço mL espaço igual a espaço 250 espaço mL

Pelo enunciado, a capacidade total da jarra é de 500 mL e pelos nossos cálculos a quantidade de líquido que sobrou na jarra é de 250 mL, ou seja, a metade da sua capacidade. Portanto, podemos dizer que a fração de líquido que restou é de 1/2 da sua capacidade.

Confira outra forma de encontrar a fração.

numerador sobre denominador espaço igual a espaço numerador líquido espaço restante sobre denominador capacidade espaço total fim da fração igual a espaço 250 à potência de dividido por 10 fim do exponencial sobre 500 à potência de dividido por 10 fim do exponencial espaço igual a espaço 25 à potência de dividido por 5 fim do exponencial sobre 50 à potência de espaço em branco à potência de dividido por 5 fim do exponencial fim do exponencial espaço igual a espaço 5 à potência de espaço em branco à potência de dividido por 5 fim do exponencial fim do exponencial sobre 10 à potência de espaço em branco à potência de dividido por 5 fim do exponencial fim do exponencial espaço igual a espaço 1 meio

Como a jarra foi preenchida com 3/4 de refresco, Mário distribuiu 1/4 do líquido nos copos, deixando na jarra 2/4, que é o mesmo que 1/2.

Exercício 4

20 colegas de trabalho resolveram fazer uma aposta e premiar aqueles que mais acertassem os resultados dos jogos de um campeonato de futebol.

Sabendo que cada pessoa contribuiu com 30 reais e que os prêmios seriam distribuídos da seguinte forma:

  • 1º primeiro colocado: 1/2 do valor arrecadado;
  • 2º primeiro colocado: 1/3 do valor arrecadado;
  • 3º primeiro colocado: recebe a quantia restante.

Quanto, respectivamente, cada participante premiado recebeu?

a) R$ 350; R$ 150; R$ 100
b) R$ 300; R$ 200; R$ 100
c) R$ 400; R$ 150; R$ 50
d) R$ 250; R$ 200; R$ 150

Resposta correta: b) R$ 300; R$ 200; R$ 100.

Primeiramente, devemos calcular o valor arrecadado.

20 x R$ 30 = R$ 600

Como cada uma das 20 pessoas contribuíram com R$ 30, então a quantia utilizada para premiação foi de R$ 600.

Para saber quanto cada ganhador recebeu devemos realizar a divisão do valor total pela fração correspondente.

1º colocado:

600 espaço dois pontos espaço 1 meio espaço igual a espaço 600 sobre 2 espaço igual a espaço 300

2º colocado:

600 espaço dois pontos espaço 1 terço espaço igual a espaço 600 sobre 3 espaço igual a espaço 200

3º colocado:

Para o último premiado, devemos somar quanto os outros ganhadores receberam e subtrair do valor arrecadado.

300 + 200 = 500

600 - 500 = 100

Portanto, temos a seguinte premiação:

  • 1º colocado: R$ 300,00;
  • 2º colocado: R$ 200,00;
  • 3º colocado: R$ 100,00.

Veja também: Multiplicação e Divisão de Frações

Exercício 5

Em uma disputa entre carros de corrida um competidor estava a 2/7 de terminar a prova quando sofreu um acidente e precisou abandoná-la. Sabendo que a competição foi realizada com 56 voltas no autódromo, em que volta o competidor foi retirado da pista?

a) 16ª volta
b) 40ª volta
c) 32ª volta
d) 50ª volta

Resposta correta: b) 40ª volta.

Para determinar em que volta o competidor deixou a corrida precisamos determinar a volta que corresponde a 2/7 para terminar o percurso. Para isso, utilizaremos a multiplicação de fração por um número inteiro.

56 espaço reto x espaço 2 sobre 7 igual a espaço numerador 56 reto x 2 sobre denominador 7 fim da fração espaço igual a espaço 112 sobre 7 igual a espaço 16

Se restavam 2/7 do percurso para terminar a prova, então faltavam 16 voltas para o competidor.

Subtraindo o valor encontrado pelo número total de volta temos:

56 – 16 = 40.

Portanto, após 40 voltas o competidor foi retirado da pista.

Confira outra maneira de resolver essa questão.

Se a competição é realizada com 56 voltas no autódromo e, segundo o enunciado, faltavam 2/7 da prova para terminar, então as 56 voltas correspondem à fração 7/7.

Subtraindo 2/7 do total 7/7, encontraremos o percurso realizado pelo competidor até o local em que ocorreu o acidente.

7 sobre 7 espaço menos espaço 2 sobre 7 espaço igual a espaço numerador 7 menos 2 sobre denominador 7 fim da fração espaço igual a espaço 5 sobre 7

Agora, basta multiplicar as 56 voltas pela fração acima e encontrar a volta que o competidor foi retirado da pista.

56 espaço reto x espaço 5 sobre 7 espaço igual a espaço numerador 56 reto x 5 sobre denominador 7 fim da fração espaço igual a espaço 280 sobre 7 espaço igual a espaço 40

Sendo assim, nas duas formas de calcular, encontraremos o resultado 40ª volta.

Veja também: O que é fração?

Questões comentadas de vestibulares

Questão 6

ENEM (2021)

Antônio, Joaquim e José são sócios de uma empresa cujo capital é dividido, entre os três, em partes proporcionais a: 4, 6 e 6, respectivamente. Com a intenção de igualar a participação dos três sócios no capital da empresa, Antônio pretende adquirir uma fração do capital de cada um dos outros dois sócios.

A fração do capital de cada sócio que Antônio deverá adquirir é

a) 1/2

b) 1/3

c) 1/9

d) 2/3

e) 4/3

Resposta: item c

Do enunciado sabemos que a empresa foi dividida em 16 partes, pois 4 + 6 + 6 = 16.

Essas 16 partes devem ser divididas em três partes iguais para os sócios.

Como 16/3 não é uma divisão exata, podemos multiplicar por um valor comum, sem perder a proporcionalidade.

Vamos multiplicar por 3 e verificar a igualdade.

4.3 + 6.3 + 6.3 = 16.3

12 + 18 + 18 = 48

48 = 48

Dividindo 48 por 3 o resultado é exato.

48/3 = 16

Agora, a empresa está dividida em 48 partes, das quais:

Antônio possui 12 partes das 48.

Joaquim possui 18 partes das 48.

José possui 18 partes das 48.

Dessa forma, Antônio, que já tem 12, precisa receber mais 4 para ficar com 16.

Por isso, cada um dos outros sócios, precisam passar 2 partes, das 18, para Antônio.

A fração que Antônio precisa adquirir de casa sócio é 2/18, simplificando:

2/18 = 1/9

Questão 7

ENEM (2021)

Um jogo pedagógico é formado por cartas as quais está impressa uma fração em uma de suas faces. Cada jogador recebe quatro cartas e vence aquele que primeiro consegue ordenar crescentemente suas cartas pelas respectivas frações impressas. O vencedor foi o aluno que recebeu as cartas com as frações: 3/5, 1/4, 2/3 e 5/9.

A ordem que esse aluno apresentou foi

a) 1/4, 5/9, 3/5, 2/3

b) 1/4, 2/3, 3/5, 5/9

c) 2/3, 1/4, 3/5, 2/3

d) 5/9, 1/4, 3/5, 2/3

e) 2/3, 3/5, 1/4, 5/9

Resposta: item a

Para comparar frações elas devem possuir os denominadores iguais. Para isso, calculamos o MMC entre 5, 4, 3 e 9, que são os denominadores das frações sorteadas.

MMC entre 5, 4, 3 e 9

Para encontrar as frações equivalentes, dividimos 180 pelos denominadores das frações sorteadas e, multiplicamos o resultado pelos numeradores.

Para 3/5

180 / 5 = 36, como 36 x 3 = 108, a fração equivalente será 108 / 180.

Para 1/4

180/4 = 45, como 45 x 1 = 45, a fração equivalente será 45/180

Para 2/3

180/3 = 60, como 60 x 2 = 120, a fração equivalente será 120/180

Para 5/9

180/9 = 20, como 20 x 5 = 100. a fração equivalente será 100/180

Com as frações equivalentes, basta ordenar pelos numeradores em ordem crescente e associar com as frações sorteadas.

ordenação de numeradores em ordem crescente associados com frações sorteadas para resolução de exercícios de frações

Questão 8

(UFMG-2009) Paula comprou dois potes de sorvete, ambos com a mesma quantidade do produto.

Um dos potes continha quantidades iguais dos sabores chocolate, creme e morango; e o outro, quantidades iguais dos sabores chocolate e baunilha.

Então, é CORRETO afirmar que, nessa compra, a fração correspondente à quantidade de sorvete do sabor chocolate foi:

a) 2/5
b) 3/5
c) 5/12
d) 5/6

Resposta correta: c) 5/12.

O primeiro pote continha 3 sabores em iguais quantidades: 1/3 de chocolate, 1/3 de baunilha e 1/3 de morango.

No segundo pote, havia 1/2 de chocolate e 1/2 de baunilha.

Representando esquematicamente a situação, conforme imagem abaixo, temos:

representação de frações com barrinhas de chocolate para resolução de exercícios de fração

Note que queremos saber a fração correspondente à quantidade de chocolate na compra, ou seja, considerando os dois potes de sorvete, por isso dividimos os dois potes em partes iguais.

Desta forma, cada pote foi dividido em 6 partes iguais. Portanto nos dois potes temos 12 partes iguais. Sendo que destas, 5 partes correspondem ao sabor chocolate.

Assim, a resposta correta é a letra c.

Poderíamos ainda resolver esse problema, considerando que a quantidade de sorvete em cada pote é igual a Q. Temos então:

1 º pote dois pontos reto Q sobre 3

2 º espaço pote dois pontos espaço reto Q sobre 2

O denominador da fração procurada será igual a 2Q, pois temos que considerar que são dois potes. O numerador será igual a soma das partes de chocolate em cada pote. Assim:

numerador começar estilo mostrar reto Q sobre 3 mais reto Q sobre 2 fim do estilo sobre denominador 2 reto Q fim da fração igual a numerador começar estilo mostrar numerador 2 reto Q mais 3 reto Q sobre denominador 6 fim da fração fim do estilo sobre denominador 2 reto Q fim da fração igual a numerador 5 espaço riscado diagonal para cima sobre reto Q espaço fim do riscado sobre denominador 6 fim da fração. numerador 1 sobre denominador 2 riscado diagonal para cima sobre reto Q espaço fim do riscado fim da fração igual a 5 sobre 12

Lembre-se que quando dividimos uma fração por outra, repetimos a primeira, passamos para multiplicação e invertemos a segunda fração.

Veja também: Simplificação de Frações

Questão 9

(Unesp-1994) Duas empreiteiras farão conjuntamente a pavimentação de uma estrada, cada uma trabalhando a partir de uma das extremidades. Se uma delas pavimentar 2/5 da estrada e a outra os 81 km restantes, a extensão dessa estrada é de:

a) 125 km
b) 135 km
c) 142 km
d) 145 km
e) 160 km

Resposta correta: b) 135 km.

Sabemos que o valor total da estrada é de 81 km (3/5) + 2/5. Através da regra de três podemos descobrir o valor em km dos 2/5. Logo:

3/5 81 Km
2/5 x

3 sobre 5 reto x igual a 81.2 sobre 5 seta dupla para a direita 3 reto x igual a numerador 162. riscado diagonal para cima sobre 5 espaço fim do riscado sobre denominador riscado diagonal para cima sobre 5 espaço fim do riscado fim da fração seta dupla para a direita reto x igual a 162 sobre 3 igual a 54

Encontramos, portanto, que 54 km equivalente a 2/5 da estrada. Agora, basta somar esse valor ao outro:

54 km + 81 km = 135 km

Portanto, se uma delas pavimentar 2/5 da estrada e a outra os 81 km restantes, a extensão dessa estrada é de 135 km.

Se tiver dúvida sobre a resolução desse exercício, leia também: Regra de Três Simples e Composta.

Questão 10

(UECE-2009) Uma peça de tecido, após a lavagem, perdeu 1/10 de seu comprimento e ficou medindo 36 metros. Nessas condições, o comprimento, em metros, da peça antes da lavagem era igual a:

a) 39,6 metros
b) 40 metros
c) 41,3 metros
d) 42 metros
e) 42,8 metros

Resposta correta: b) 40 metros.

Nesse problema precisamos encontrar o valor equivalente a 1/10 do tecido que foi encolhido após a lavagem. Lembre-se que os 36 metros equivalem, portanto, a 9/10.

Se 9/10 é 36, quanto será 1/10?

A partir da regra de três conseguimos obter esse valor:

9/10 36 metros
1/10 x

9 sobre 10 reto x igual a 36.1 sobre 10 seta dupla para a direita 9 reto x igual a numerador 36. riscado diagonal para cima sobre 10 espaço fim do riscado sobre denominador riscado diagonal para cima sobre 10 espaço fim do riscado fim da fração seta dupla para a direita reto x igual a 36 sobre 9 seta dupla para a direita reto x igual a 4

Sabemos então que 1/10 da roupa equivale a 4 metros. Agora, basta somar com os 9/10 restantes:

36 metros (9/10) + 4 metros (1/10) = 40 metros

Portanto, o comprimento, em metros, da peça antes da lavagem era igual a 40 metros.

Questão 11

(ETEC/SP-2009) Tradicionalmente, os paulistas costumam comer pizza nos finais de semana. A família de João, composta por ele, sua esposa e seus filhos, comprou uma pizza tamanho gigante cortada em 20 pedaços iguais. Sabe-se que João comeu 3/12 e sua esposa comeu 2/5 e sobraram N pedaços para seus filhos. O valor de N é?

a) 7
b) 8
c) 9
d) 10
e) 11

Resposta correta: a) 7.

Sabemos que as frações representam a parte de um todo, que nesse caso são os 20 pedaços de uma pizza gigante.

Para resolver esse problema, temos que obter a quantidade de pedaços correspondente a cada fração:

João: comeu 3/12
Esposa de João: comeu 2/5
N: o que sobrou (?)

Vamos então descobrir quantos pedaços que cada um deles comeu:

João: 3/12 de 20 = 3/12 . 20 = 60/12 = 5 pedaços
Esposa: 2/5 de 20 = 2/5 . 20 = 8 pedaços

Se somarmos os dois valores (5 + 8 = 13) temos a quantidade de fatias que foram comidas por eles. Portanto, sobraram 7 pedaços que foram divididos entre os filhos.

Questão 12

(Enem-2011) O pantanal é um dos mais valiosos patrimônios naturais do Brasil. É a maior área úmida continental do planeta - com aproximadamente 210 mil km2, sendo 140 mil km2 em território brasileiro, cobrindo parte dos estados de Mato Grosso e Mato Grosso do Sul. As chuvas fortes são comuns nessa região. O equilíbrio desse ecossistema depende, basicamente, do fluxo de entrada e saída de enchentes. As cheias chegam a cobrir até 2/3 da área pantaneira. Durante o período chuvoso, a área alagada pelas enchentes pode chegar a um valor aproximado de:

a) 91,3 mil km2
b) 93,3 mil km2
c) 140 mil km2
d) 152,1 mil km2
e) 233,3 mil km2

Resposta correta: c) 140 mil km2.

Primeiramente, devemos anotar os valores oferecidos pelo exercício:

210 mil km2: total da área
2/3 é o valor que as cheias cobrem dessa área

Para resolver basta saber o valor dos 2/3 de 210 mil Km2

210.000 . 2/3 = 420 000/3 = 140 mil km2

Portanto, durante o período chuvoso, a área alagada pelas enchentes pode chegar a um valor aproximado de 140 mil km2.

Questão 13

(Enem-2016) No tanque de um certo carro de passeio cabem até 50 L de combustível, e o rendimento médio deste carro na estrada é de 15 km/L de combustível. Ao sair para uma viagem de 600 km o motorista observou que o marcador de combustível estava exatamente sobre uma das marcas da escala divisória do marcador, conforme figura a seguir.

Representação de mostrador de carro indicando reserva de combustível_Questão Enem - 2016

Como o motorista conhece o percurso, sabe que existem, até a chegada a seu destino, cinco postos de abastecimento de combustível, localizados a 150 km, 187 km, 450 km, 500 km e 570 km do ponto de partida. Qual a máxima distância, em quilômetro, que poderá percorrer até ser necessário reabastecer o veículo, de modo a não ficar sem combustível na estrada?

a) 570
b) 500
c) 450
d) 187
e) 150

b) 500.

Para descobrir quantos quilômetros o carro poderá percorrer, o primeiro passo é descobrir quanto de combustível existe no tanque.

Para isso, temos que fazer a leitura do marcador. No caso, o ponteiro está marcando metade, mais metade da metade. Podemos representar essa fração por:

1 meio mais numerador começar estilo mostrar 1 meio fim do estilo sobre denominador 2 fim da fração igual a 1 meio mais 1 meio.1 meio igual a 1 meio mais 1 quarto igual a 2 sobre 4 mais 1 quarto igual a 3 sobre 4

Portanto, 3/4 do tanque estão cheios. Agora, temos que saber quantos litros equivale a essa fração. Como o tanque totalmente cheio tem 50 litros, então vamos encontrar 3/4 de 50:

3 sobre 4.50 espaço igual a espaço 150 sobre 4 igual a 37 vírgula 5 espaço litros

Sabemos ainda que o rendimento do carro é de 15 km com 1 litro, então fazendo uma regra de três encontramos:

15 km 1 litro
x 37,5 km

x = 15 . 37,5
x = 562,5 km

Assim, o carro poderá percorrer 562,5 km com o combustível que está no tanque. Contudo, ele deverá parar antes de ficar sem combustível.

Neste caso, ele terá que reabastecer após percorrer 500 km, pois é o posto antes de ficar sem combustível.

Questão 14

(Enem-2017) Em uma cantina, o sucesso de vendas no verão são sucos preparados à base de polpa de frutas. Um dos sucos mais vendidos é o de morango com acerola, que é preparado com 2/3 de polpa de morango e 1/3 de polpa de acerola.

Para o comerciante, as polpas são vendidas em embalagens de igual volume. Atualmente, a embalagem da polpa de morango custa R$ 18,00 e a de acerola, R$ 14,70. Porém, está prevista uma alta no preço da embalagem da polpa de acerola no próximo mês, passando a custar R$ 15,30.

Para não aumentar o preço do suco, o comerciante negociou com o fornecedor uma redução no preço da embalagem da polpa de morango.

A redução, em real, no preço da embalagem da polpa de morango deverá ser de

a) 1,20
b) 0,90
c) 0,60
d) 0,40
e) 0,30

Resposta correta: e) 0,30.

Primeiro, vamos descobrir o custo do suco para o comerciante, antes do aumento.

Para encontrar esse valor, vamos somar o custo atual de cada fruta, levando em consideração a fração usada para fazer o suco. Assim, temos:

2 sobre 3.18 espaço mais 1 terço.14 vírgula 7 igual a 12 mais 4 vírgula 9 espaço igual a 16 vírgula 9

Então, esse é o valor que será mantido pelo comerciante.

Sendo assim, vamos chamar de x o valor que a polpa de morango deve passar a custar para que o custo total permaneça o mesmo (R$16,90) e considerar o novo valor da polpa de acerola:

2 sobre 3. reto x mais 1 terço.15 vírgula 3 igual a 16 vírgula 9 seta dupla para a direita 2 sobre 3. reto x igual a 16 vírgula 9 menos 5 vírgula 1 seta dupla para a direita reto x igual a numerador começar estilo mostrar 3.11 vírgula 8 fim do estilo sobre denominador 2 fim da fração seta dupla para a direita reto x igual a 17 vírgula 7

Como a questão pede a redução no preço da polpa de morango, então ainda temos que fazer a seguinte subtração:

18 - 17,7 = 0,3

Portanto, a redução terá que ser de R$0,30.

Questão 15

(TJ CE). Qual a fração que dá origem à dízima 2,54646… em representação decimal?

a) 2.521 / 990

b) 2.546 / 999

c) 2.546 / 990

d) 2.546 / 900

e) 2.521 / 999

Resposta: item a

A parte (período) que se repete é o 46.

Uma estratégia usual para encontrar a fração geratriz é isolar a parte que se repete, de duas formas.

Chamando 2,54646… de x, temos:

X = 2,54646… (equação 1)

Na equação 1, multiplicando por 10 os dois lados da igualdade , temos:

10x = 25,4646… (equação 2)

Na equação 1, multiplicando por 1000 os dois lados da igualdade, temos:

100x = 2546,4646… (equação 2)

Agora que nos dois resultados, apenas o 46 se repete, para eliminá-lo, vamos subtrair a segunda equação da primeira.

990x = 2521

Isolando x, temos:

x = 2521/990

Exercício 16

Conteúdo exclusivo para assinantes Toda Matéria+
Além de mais exercícios, tenha acesso a mais recursos para dar um up nos seus estudos.
Corretor de Redação para o Enem
Exercícios exclusivos
Estude sem publicidade

Estude mais sobre esse tema. Leia também:

Rafael C. Asth
Rafael C. Asth
Professor de Matemática licenciado, pós-graduado em Ensino da Matemática e da Física e Estatística. Atua como professor desde 2006 e cria conteúdos educacionais online desde 2021.